Материалы » Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4 » Вычисление энергетического выхода роста штамма LPM-4

Вычисление энергетического выхода роста штамма LPM-4

Энергетический выход роста штамма LPM-4 вычисляли на основании теории материально-энергетического баланса роста микроорганизмов. Согласно этой теории доступными называются электроны, которые акцептируются свободным кислородом при окислении органического материала с образованием углекислого газа и воды. [29].

Содержание доступных электронов (ДЭ) в органических соединениях удобно выражать в расчёте на один атом углерода, то есть как степень восстановлености углерода (γ).

Для соединения СНрОnNq величина степени восстановленности углерода вычисляется по формуле:

g=4+p-2n-3q

Цифра 4 означает число ДЭ углеродного атома, к ней прибавляются ДЭ водорода, число которых равно числу p, приходящихся на один атом углерода. Из этой суммы вычитаются электроны энергетически обесцененные кислородом. Их число равно удвоенному числу атомов кислорода n , приходящихся на один атом углерода, так как у кислорода валентность равна - 2. Из полученной разницы вычитается утроенное число атомов азота q , так как валентность азота равна - 3, а энергетическое состояние электронов, связанных с азотом, не меняется в процессе роста.

Приведём уравнение количественной связи энергетического баланса с показателем материального баланса, как выход по субстрату Ys .

Энергетический выход (η) характеризует долю энергии субстрата, перешедшую в биомассу.

h = gв sв/ gs ss× Ys ,

где gв- восстановленность углерода в биомассе ;

gs- восстановленность углерода в субстрате ;

σs – доля (по массе) углерода в органическом субстрате;

σв – доля (по массе) углерода в биомассе;

gв sв/ gs ss - отношение энергосодержания равных по весу количеств биомассы и субстрата;

gв sв = 2, для бактерий не синтезирующих липиды;

Ys - выход клеток по массе, г/г;

Выход клеток по массе Y:

Yx/s = Х / S ,

где Х- концентрация биомассы, г/л;

S- количество потребленного субстрата, г/л.

Выход клеток по массе из ЭДТА (YЭДТА) рассчитывали как отношение биомассы, образованной из ЭДТА, к количеству потребленной ЭДТА. А выход клеток по массе из глюкозы рассчитывали как отношение биомассы, образованной из глюкозы, к количеству потребленной глюкозы.

Теоретический предел для энергетического выхода роста h=1, так как в биомассе не может быть больше энергии, чем в использованном субстрате.

Расчет величины η для ЭДТА:

С10Н16О8N2

γ= (4*10 +16- 2*8- 3*2) / 10= 3,4

М(ЭДТА)= 292

М(углерода) = 120

292 – 100%

120 – δ

δ = 0,410

γδ= 3,4* 0,410= 1,4

h = Us (γbδb / γ sδs) = Us (2/1,4)

Расчет η для глюкозы:

С6Н12О6 СН2О

γ= 4+2-2= 4

М(глюкоза) =180

М(углерода) = 72

180 – 100%

72 – δ

δ= 0,4

γδ= 4* 0,4= 1,6

η = Υs (2/1,6)


Перспективные материалы и технологии
Обновление технической базы энергосистем и практически всех важнейших отраслей промышленности во многом связано с внедрением перспективных материалов и новейших технологий. В настоящее время во всем мире признаны перспективными керамические, композиционные, тонкопленочные и другие материалы. Керамические материалы обладают чрезвычайн ...

Значение печени и желчного пузыря. Роль желчи в пищеварении
Значительная часть тепла вырабатывается в мышцах и печени при понижении температуры внешней среды Они являются как бы внутренней печкой, согревающей организм за счет окислений питательных веществ, образуя большое количество теплоты. Без печени организм не может существовать. Здесь происходит расщепление молекул многих питательных вещес ...

Донаучный этап химии — ремесленная химия и алхимия античности и средневековья
В предыдущем пункте было рассказано о том, как происходила естественная химическая эволюция в недрах звезд, космическом пространстве и на нашей планете, теперь надо рассмотреть, как происходила эволюция взглядов людей на познание сущности химических элементов и превращения вещества. Так же, как и в познании физического устройства мира, ...