Материалы » Пространственная симметрия у живых организмов » Методологическая роль симметрии в науке. Симметрия у живых организмов

Методологическая роль симметрии в науке. Симметрия у живых организмов
Страница 1

Использование принципа симметрии на границе 19-20 вв. позволило получить выдающиеся достижения в различных областях науки. Немецкий математик Ф. Клейн, рассмотревший различные геометрии как категории инвариантов определенных групп преобразований внес существенный вклад в формирование современного понятия симметрии, тесно связанного с инвариантностью и теорией групп. Русские кристаллографы А.В. Гадолин и Е.С. Федоров создали учение о пространственной симметрии. В физике теоремы Э. Нетер позволили связать пространственно-временную симметрию (инвариантность) уравнений физики с сохранением фундаментальных величин - энергии, импульса, количества движения. Новые аспекты физического содержания симметрии в рамках теоретико-группового подхода были вскрыты специальной (СТО) и общей (ОТО) теориями относительности, а также квантовой механикой и квантовой теорией поля. Помимо получения ряда выдающихся конкретных результатов в физике, концепция симметрии привела к перевороту в философских основаниях физики, изменив представление о том, что следует считать исходными законами физики.

В наши дни идея симметрии выполняет важную методологическую роль не только в математике и физике, в технике и искусстве, но начинает проникать в химию и биологию.

Несомненно, что использование методов симметрии неоценимо для познания биологических явлений, для нахождения сути и простоты в этом сложнейшем классе природных явлений. Существует мнение, что использование симметрии и теории групп в биологии позволит получить даже более выдающиеся результаты, чем в физике. К сожалению, симметрийный подход к биологическим объектам как методологический прием стал развиваться только в последние десятилетия 20 века. Наиболее глубокое и обобщающее развитие идей биосимметрии и исчерпывающее изложение общих задач и следствий дано в работах Ю.А. Урманцева. Во многом благодаря работам Урманцева в биологии сформировалось новое научное направление - биосимметрика, изучающая вопросы симметрии, их нарушение, симметризацию и десимметризацию в живой природе, биологические инварианты, биологические законы сохранения и соответствующие группы преобразований. Ю.А. Урманцев внес огромный вклад в развитие почти всех сторон биосимметрики, особенно в создание теорий дисфакторов и биологической изомерии, на основе которых им была развита универсальная ОТС. В объяснении природы левого и правого в симметрии был сделан крупный шаг с введением понятия диссимметрирующих факторов (сокращенно называемых дисфакторами), т.е. таких отличительных особенностей и признаков у объектов, которые делают их правыми или левыми Положение теории биологической изомерии Ю.А. Урманцева и его ОТС принципиально важны для правильного понимания деятельности живых систем. Значительный вклад в биосимметрику сделал А.П. Дубров, разработавший важное направление в биологии и медицине - функциональную биосимметрику. Функциональная биосимметрика обосновывает вариабельность медико-биологических свойств, параметров и показателей жизнедеятельности человека, животных, растений и микроорганизмов. Следует отметить, что интерес к симметрии среди ученых, занимающихся проблемами организации биосистем, неуклонно возрастает. В последние годы появился ряд работ, посвященных общим проблемам симметрии живых систем и выявлению симметрии в конкретных биообъектах. В некоторых из этих исследований представлена роль особых чисел и безразмерных отношений в организации живого и симметрийных преобразованиях живых систем.

Страницы: 1 2 3 4


Органы дыхания
2 типа: водное и воздушное. У низших хордовых животных - передняя часть кишечной трубки. В стенках глотки имеются 100-150 пар жаберных щелей (щели в глотке). У рыб - на межжаберных перегородках - многочисленные эпителиальные выросты - жаберные лепестки. Эволюция: число жаберных перегородок сокращается, но увеличивается число жаберных ...

Методы диагностики грибковых инфекций. Микроскопия
Микроскопия — один из основных методов выявления возбудителей микозов. Позволяет проводить экспресс-диагностику микозов и получать результат в течение 1-2 ч, тогда как для выделения культуры возбудителя необходимы недели. Для экспресс-диагностики препараты часто необходимо окрашивать специальными красителями, так как простая окраска ге ...

Генетические продукты.
Согласно недавним оценкам Международной службы по внедрению прикладной биотехнологии в сельском хозяйстве посевные "генетические" площади и производство генных зерновых продуктов с каждым годом увеличиваются на 25-30%. Но до сих пор страны - участницы ЕС не определились с перспективами генетических технологий в сельском хозяй ...