Материалы » Пространственная симметрия у живых организмов » Методологическая роль симметрии в науке. Симметрия у живых организмов

Методологическая роль симметрии в науке. Симметрия у живых организмов
Страница 1

Использование принципа симметрии на границе 19-20 вв. позволило получить выдающиеся достижения в различных областях науки. Немецкий математик Ф. Клейн, рассмотревший различные геометрии как категории инвариантов определенных групп преобразований внес существенный вклад в формирование современного понятия симметрии, тесно связанного с инвариантностью и теорией групп. Русские кристаллографы А.В. Гадолин и Е.С. Федоров создали учение о пространственной симметрии. В физике теоремы Э. Нетер позволили связать пространственно-временную симметрию (инвариантность) уравнений физики с сохранением фундаментальных величин - энергии, импульса, количества движения. Новые аспекты физического содержания симметрии в рамках теоретико-группового подхода были вскрыты специальной (СТО) и общей (ОТО) теориями относительности, а также квантовой механикой и квантовой теорией поля. Помимо получения ряда выдающихся конкретных результатов в физике, концепция симметрии привела к перевороту в философских основаниях физики, изменив представление о том, что следует считать исходными законами физики.

В наши дни идея симметрии выполняет важную методологическую роль не только в математике и физике, в технике и искусстве, но начинает проникать в химию и биологию.

Несомненно, что использование методов симметрии неоценимо для познания биологических явлений, для нахождения сути и простоты в этом сложнейшем классе природных явлений. Существует мнение, что использование симметрии и теории групп в биологии позволит получить даже более выдающиеся результаты, чем в физике. К сожалению, симметрийный подход к биологическим объектам как методологический прием стал развиваться только в последние десятилетия 20 века. Наиболее глубокое и обобщающее развитие идей биосимметрии и исчерпывающее изложение общих задач и следствий дано в работах Ю.А. Урманцева. Во многом благодаря работам Урманцева в биологии сформировалось новое научное направление - биосимметрика, изучающая вопросы симметрии, их нарушение, симметризацию и десимметризацию в живой природе, биологические инварианты, биологические законы сохранения и соответствующие группы преобразований. Ю.А. Урманцев внес огромный вклад в развитие почти всех сторон биосимметрики, особенно в создание теорий дисфакторов и биологической изомерии, на основе которых им была развита универсальная ОТС. В объяснении природы левого и правого в симметрии был сделан крупный шаг с введением понятия диссимметрирующих факторов (сокращенно называемых дисфакторами), т.е. таких отличительных особенностей и признаков у объектов, которые делают их правыми или левыми Положение теории биологической изомерии Ю.А. Урманцева и его ОТС принципиально важны для правильного понимания деятельности живых систем. Значительный вклад в биосимметрику сделал А.П. Дубров, разработавший важное направление в биологии и медицине - функциональную биосимметрику. Функциональная биосимметрика обосновывает вариабельность медико-биологических свойств, параметров и показателей жизнедеятельности человека, животных, растений и микроорганизмов. Следует отметить, что интерес к симметрии среди ученых, занимающихся проблемами организации биосистем, неуклонно возрастает. В последние годы появился ряд работ, посвященных общим проблемам симметрии живых систем и выявлению симметрии в конкретных биообъектах. В некоторых из этих исследований представлена роль особых чисел и безразмерных отношений в организации живого и симметрийных преобразованиях живых систем.

Страницы: 1 2 3 4


Конденсация хроматина
Это наиболее характерное проявление апоптоза. Хроматин конденсируется по периферии, под мембраной ядра, при этом образуются четко очерченные плотные массы различной формы и размеров. Ядро же может разрываться на два или несколько фрагментов. Механизм конденсации хроматина изучен достаточно хорошо. Он обусловлен расщеплением ядерной ДНК ...

Протоколы полимеразной цепной реакции. Постановка реакции с использованием фирменного набора(система SYBgreen)
Для ПЦР в качестве матрицы использовали плазмиду pcDNA3 cavmut – плазмидный вектор, содержащий кДНК мутантного кавеолина (P132L) человека (исходная концентрация 0,7 мг/мл), пару праймеров pc1(исх.конц. 31 мкМ) и pc2 (исх.конц. 12 мкМ), SYBRgreen (10000 кратный раствор) и taq-полимеразу. Фермент поставляется фирмой Sigma в наборе c буфер ...

Методы выделения и идентификации бактерий. Микроскопия материала
Любое бактериологическое исследование начинается с микроскопии материала и его последующего посева на питательные среды. Эффективность выделения возбудителя в значительной степени обусловлена правильной техникой отбора образцов клинического материала, своевре­менностью их доставки в лабораторию и правильным хранением образцов. ...