Теплота и энтропия
Страница 1

Энтропия вводится вторым началом термодинамики. В формулировке А. Зоммерфельда оно звучит так: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последовательность состояний равновесия, вычисляются все подводимые при этом порции тепла δQ, делятся каждая на соответствующую ей абсолютную температуру, и все полученные таким образом значения суммируются. При реальных (в современной терминологии – необратимых) процессах энтропия замкнутой системы возрастает»[3].

Таким образом,

(1)

или

(2)

Подчеркнем, что выбор отдельных обратимых процессов в уравнении 1 или пути интегрирования в уравнении 2 могут не иметь ничего общего с тем, каким образом в действительности система переходит из состояния В в состояние А. Реальные процессы, как правило, необратимы. Однако в равенствах (1) и (2) δQ соответствуют обратимым переходам. Поскольку энтропия является функцией состояния, то есть величиной, которая не зависит от того, каким путем было достигнуто это состояние, то выбор пути обратимого процесса не имеет значения. В качестве примера рассмотрим изменение энтропии при расширении газа в пустоту. Пусть первоначально газ находился в объеме V1, объем V2- V1 пустой (рис. 1).

Рис.1

После удаления перегородки газ свободно расширяется, занимая весь объем V2. Этот процесс является необратимым. Газ самопроизвольно не может вернуться в первоначальное состояние, то есть снова оказаться в объеме V1 (вероятность такой гигантской флуктуации чрезвычайно мала). В соответствии со вторым началом энтропия в таком процессе должна возрастать. Вместе с тем величина

(3)

не является энтропией. В формуле (2) стоит δQ, соответствующее мысленному обратимому процессу. В качестве такого мыслимого процесса удобно выбрать обратимый изотермический процесс расширения с участием поршня и подводом тепла δQ(рис. 2).

Рис.2

В этом случае в соответствии с первым началом термодинамики δQ = dU + pdV. Если ограничиться случаем идеального газа, для которого U зависит только от температуры и поэтому dU= 0, то δQ = pdV и

(4)

Расчет проведен для одного моля газа, поэтому pV = RT[4].

Вернемся к анализу самого понятия энтропии. Второе начало термодинамики вводит энтропию формальным путем как некую новую функцию состояния, не вскрывая ее физического смысла. Термодинамика не устанавливает связи энтропии с внутренними молекулярными свойствами системы и не дает способа, с помощью которого эту связь можно установить. В этом состоит основная трудность для всех начинающих изучать термодинамику. Свойства и физический смысл энтропии раскрываются, как и в случае с температурой, в рамках статистической физики. Прежде чем обсуждать физический смысл энтропии, необходимо ответить на вопрос, зачем потребовалось вводить это понятие. В практике тепловых измерений точно фиксируется количество теплоты, переданное и отнятое у тела в определенном процессе.

Например, при нагревании 1 г воды на 1°С необходимо затратить 1 калорию (1 кал = 4,1868 Дж). Однако говорить о количестве теплоты, содержащейся в теле, бессмысленно. Тепло может переходить в работу, создаваться при трении, но не сохраняется. В общем случае можно сказать, что тепло передается, но не сохраняется. Сохраняющейся величиной в определенных условиях является энтропия. Например, энтропия сохраняется при обратимом адиабатическом процессе, когда отсутствует передача тепла. Изменение энтропии при возвращении системы в исходное состояние после произвольного кругового обратимого процесса также равно нулю. Это утверждение следует, например, из анализа цикла Карно (рис. 3). Коэффициент полезного действия в цикле Карно

(5)

откуда следует равенство

(6)

имеющее ясный физический смысл. Приращение энтропии на изотерме 1–2 компенсируется убыванием энтропии на изотерме 3–4. Изменение энтропии на адиабатах 2–3 и 4–1 равно нулю.

Из факта возвращения энтропии к своему первоначальному значению после произвольного обратимого кругового процесса следует вывод, что энтропия в данном состоянии не зависит от способа достижения этого состояния, а определяется параметрами этого состояния, то есть является функцией состояния, как утверждает второе начало. Таким образом, можно говорить о количестве энтропии в данном состоянии. В этом принципиальное отличие энтропии от теплоты. В общем случае для энтропии нет закона сохранения. При обратимых процессах энтропия может переходить от системы к окружающей среде и наоборот. При необратимых процессах возникающая в системе энтропия всегда положительна.

Страницы: 1 2


Фотосинтез
До сих пор мы рассматривали организмы, которые для обеспечения конструктивных процессов используют энергию химических связей органических или неорганических веществ. Другая большая группа организмов способна обеспечивать конструктивный метаболизм за счет световой энергии в процессе, который получил название фотосинтез. Итак, фотосинтез ...

Способы повышения зимостойкости растений
Зимостойкость – это способность растений противостоять целому комплексу неблагоприятных факторов внешней среды в зимнее время. Основные способы ее повышения – подбор и селекция видов и сортов сельскохозяйственных культур, наиболее приспособленных к комплексу неблагоприятных условий перезимовки конкретного региона. Причины зимних поврежд ...

Естествознание Нового Времени. Научная революция XVII века. Классическая механика и экспериментальное естествознание
Эпоха получившая название «Нового времени», охватывает три столетия – XVII, XVIII и XIX века. В этом периоде основную роль сыграл XVII век – век рождения современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей и Ньютон. Галилео Галилей заложил основы нового механического естествознания. До него в науке движение ...