Микро и макроэволюцияСтраница 1
Эволюция биомассы на Земле рисуется следующим образом. Разделим существующие организмы на группы:
1) водоросли,
2) морские животные,
3) наземные растения,
4) наземные животные.
Водоросли появились в катархее, и в течение архея и протерозоя их биомасса нарастала до величины порядка сегодняшней, т.е. до 1 млрд. т. Морские животные появились в среднем протерозое, их биомасса очень медленно росла до венда, а в течение кембрия, вероятно, быстро выросла до величины порядка сегодняшней, т.е. до 20-30 млрд. т. Наземные растения появились, возможно, еще в ордовике или даже в кембрии, однако их биомасса стала ощутимой лишь в силуре, а за девон и карбон быстро выросла до колоссальных размеров, порядка нескольких триллионов тонн; в перми она, возможно, даже несколько уменьшилась и приблизилась к современному уровню. Наконец, наземные животные появились только в девоне, их биомасса достигла современной величины, вероятно, еще в палеозое.
Что же касается изменений со временем разнообразия форм организмов, то здесь имеются довольно надежные фактические данные. Они показывают, что в разнообразии форм монотонного нарастания со временем не было, так как при появлении новых форм некоторые из старых отмирали. Так, в кембрии появилось 28 классов животных, в ордовике еще 14 (но часть классов уже отмерла), в силуре еще 3 (но 2 отмерли). Начало верхнего палеозоя ознаменовалось новой вспышкой формообразования - в девоне появилось 9 новых классов (и их число достигло фанерозойского максимума), а карбоне еще 5 (но 8 отмерло), в перми новых классов не появилось (но 4 отмерли). К триасу 3 класса отмерли, но 1 появился (и число классов достигло фанерозойского минимума, если не считать кембрия), в юре и мелу был небольшой прирост. В кайнозое изменений не произошло. Аналогичны данные и по классам растений; здесь также разделяются нижний палеозой, верхний палеозой, мезозой и кайнозой, лишь отмирания классов почти не происходило [7. С. 197].
Жизнь на Земле зародилась, когда на дне мелких теплых морей катархея, богатых сложными органическими веществами до аминокислот включительно, начали образовываться двойные сахаро-фосфатные спиральные нити высокополимерных нуклеиновых кислот с закрепленными на них последовательностями оснований (служащими «кодами» для синтеза белков), способные при некоторых условиях разворачиваться в одинарные спирали и синтезировать на каждой из них недостающую вторую спираль, т.е. порождать пару себе подобных (передавать им информацию о процедурах синтеза белков, закодированных последовательностями оснований). Такие полимеры, которые синтезировали белки, обеспечивающие им достаточно длительное самосохранение, по-видимому, уже можно считать первичными организмами.
Эти первичные микроорганизмы, возможно, питались имевшейся органикой небиологического происхождения, осуществляя, например, бескислородное разложение белков и аминокислот - гниение или углеродов - брожение (анологично питаются современные сапрофиты, поглощая через свои стенки клеток органику биологического происхождения: например, дрожжи при отсутствии кислорода сбраживают глюкозу до спирта и углекислоты). Развитие этих организмов, вероятно, исключило условия для дальнейшего самозарождения жизни, и с тех пор все живое появляется уже только от живого. В результате эволюции микроорганизмов (вынуждаемой нехваткой подходившей для пищи органики) у них появилась способность синтезировать необходимые для самосохранения органические молекулы из неорганических. Наиболее эффективным способом оказался фотосинтез - продуцирование органического вещества из углекислоты и воды под действием солнечного света (энергия света, поглощаемого пигментами, прежде всего зеленым хлорофиллом, расходуется на расщепление молекул воды, кислород выделяется в атмосферу, а водород вместе с углекислотой идет на образование первичного органического продукта - фосфоглицериновой кислоты).
Первыми фотосинтезирующими растениями были, по-видимому, микроскопические синезеленые водоросли цианофиты, у которых хлорофилл рассеян в виде мелких зерен по плазме клеток (у более развитых растений он сосредоточен в специальных тельцах - хлоропластах), и имеется еще синий пигмент фикоцианин. Эти водоросли похожи на бактерий тем, что в их клетках трудно различить ядра, и размножаются они только делением.
Наиболее древние остатки жизнедеятельности организмов, найденные в Трансваале в породах серии Свазиленд возрастом 3.1-3.4 млрд. лет, были тщательно изучены Э. Баргхорном и Дж. Шопфом. Они представляют собой микроскопические изолированные палочки длиной 0.45-0.7 мк. и диаметром 0.18-0.32 мк., имеющие двухслойные оболочки толщиной 0.045 мк.; там же обнаружены нитеподобные образования, а также микроскопические шаровидные, дисковидные и многоугольные оболочки одноклеточных водорослей акритархи. Почти столь же древними (более 2.9 млрд. лет) являются обызвествленные продукты жизнедеятельности цианофитов и бактерий - прикрепленные ко дну столбчатые строматолиты и неприкрепленные округлые онколиты, найденные в известковых прослоях зеленокаменных пород системы Булавайо в Южной Родезии и описанные А. Мак-Грегором еще в 1940 г. [7. С. 204]
Бронхи
Главные бронхи отходят от трахеи почти под прямым углом и направляются к воротам легких. Правый бронх шире, но короче левого и является как бы продолжением трахеи. Стенка главных бронхов, так же как и трахея, содержит неполные хрящевые кольца. В бронхах среднего калибра гиалиновая хрящевая ткань сменяется эластической хрящевой тканью. В ...
Видоизменения клеточной оболочки и процессы, вызывающие одревеснение,
кутинизацию, опробкование, ослизнение и минерализацию
Клеточная оболочка – это структурное образование, располагающееся по периферии клетки, придающее клетке прочность, сохраняющее ее форму и защищающее протопласт.
Диффенциация многих клеток сопровождается изменением химического состава их оболочек, что придаёт им специфические свойства, позволяющие выполнять специальные функции.
Одревес ...
Нелинейность
«Линейность абсолютизирует поступательность, безальтернативность, торжество постоянства»
Но если большинство систем Вселенной носит открытый характер, то это значит, что во Вселенной доминирует не стабильность и равновесие, а неустойчивость и неравновесность. «Неравновесность, в свою очередь, порождает избирательность системы, ее необ ...
