Материалы » Механика микрочастиц » Формирование квантовой механики и квантовой физики. Специфика её законов и принципов.

Формирование квантовой механики и квантовой физики. Специфика её законов и принципов.
Страница 1

Квантовая механика и квантовая физика в основном сфор­мировались в первые два десятилетия XX в. усилиями М. Планка, А. Эйнштейна, Н. Бора, Л. де Бройля, В, Гейзенберга, Э. Шрёдингера и других ученых. Динамическое, однознач­ное, с указанием точной траектории описание движения клас­сической механикой отрицается здесь вероятностно-статисти­ческой картиной взаимодействий. Непрерывность обмена энер­гией в макромире заменяется строгой порционностыо излуче­ний в мире элементарных частиц. В квантовой физике каче­ственно изменились представления о структуре, простоте и сложности микрочастиц, о роли приборов в их познании и т.д.

До конца XIX в. мельчайшей структурной единицей материи считались атомы химических элементов. Открытие Д.И. Мен­делеевым в 1869 г. периодического закона подтолкнуло ученых к выводу о существовании более мелких частиц, свойства ко­торых обусловливают свойства атомов, в том числе и периоди­ческий закон их взаимосвязи. В 1897 г. английский физик Дж. Томсон открыл электрон — первую элементарную части­цу. В 1932 г. после открытия нейтрона картина строения веще­ства казалась в общих чертах окончательно выясненной. Изве­стных к тому времени частиц (протона, нейтрона и электрона) полностью хватало для того, чтобы объяснить строение и свой­ства всех веществ. Протоны и нейтроны, взаимодействуя друг с другом посредством особых ядерных сил (радиус действия 10"13 см), образуют атомные ядра, внешнюю оболочку атомов составля­ют электроны, притягивающиеся к ядру дальнодействующими кулоновскими силами (одно из проявлений электромагнитного взаимодействия).

Открытие нового структурного уровня строения материи и квантовых законов движения электронов заложило основы фи­зики твердого тела. Были поняты строение металлов, диэлект­риков, полупроводников, их термодинамические, электричес­кие и магнитные свойства. Открылись пути целенаправленно­го поиска новых материалов с необходимыми свойствами, пути создания новых производств, новых технологий. Большие ус­пехи были достигнуты в результате применения квантовой ме­ханики к ядерным явлениям. Квантовая механика и ядерная физика объяснили, что источником колоссальной энергии звезд являются ядерные реакции синтеза, протекающие при звезд­ных температурах в десятки и сотни миллионов градусов.

Плодотворным оказалось применение квантовой механики к физическим полям. Была построена квантовая теория элект­ромагнитного поля — квантовая электродинамика, объяснив­шая много новых явлений. Свое место в ряду элементарных частиц занял фотон — частица электромагнитного поля, не имеющая массы покоя. Синтез квантовой механики и специ­альной теории относительности привел к предсказанию анти­частиц. Оказалось, что у каждой частицы должен быть как бы свой «двойник» — другая частица с той же массой, но с проти­воположным электрическим или каким-либо другим зарядом. Английский физик П.А. Дирак, основатель релятивистской квантовой теории поля, предсказал существование позитрона и возможность превращения фотона в пару электрон—позитрон и обратно. Позитрон — античастица электрона — эксперимен­тально был открыт в 1934 г.

Замечательным подтверждением незыблемости закона со­хранения энергии и предсказательной силы теоретической мысли явилось открытие нейтрино. Экспериментально было установ­лено, что при радиоактивном р-распаде из атомного ядра ис­пускаются электроны (или позитроны), обладающие различ­ной энергией. Чтобы согласовать этот факт с законом сохране­ния энергии, швейцарский физик-теоретик В. Паули предпо­ложил, что одновременно с электроном (или позитроном) ядро испускает еще какую-то электрически нейтральную частицу, которая и уносит недостающую часть энергии. Она и была на­звана «нейтрино». Эта частица вылетает из ядра вместе с по­зитроном, а в случае испускания электрона из ядра вылетает «антинейтрино. В случае испускания электрона (<?) и анти­нейтрино (v,) при р-распаде происходит превращение нейтро­на (п) в протон (р): п-*р+ е + v, .В случае испускания по­зитрона (е+) и нейтрино (v) протон превращается в нейтрон: р -» п + е+ + vt.

Страницы: 1 2 3


Бактериологические лаборатории
В системе Министерства здравоохранения и Государственного комитета санитарно-эпидемио­логического надзора РФ наиболее разветвлена сеть бактериологических лабораторий. В соот­ветствии с выполняемыми задачами выделяют: • бактериологические лаборатории в составе ЛПУ; • бактериологические лаборатории в составе комитетов Госсанэпиднадзора; ...

Наследственность и генетические рекомбинации у бактерий
Преимущество микроорганизмов над другими организмами состоит, прежде всего, в высокой скорости размножения, гаплоидности и большой разрешающей способности методов генетического анализа этих организмов. Формирование на питательных средах многомиллиардных популяций бактерии в течение суток позволяет проводить быстрый и точный анализ проис ...

История изучения
Европейская медицина столкнулась с возбудителем холеры - Vibrio cholerae - лишь в первой половине XIX века; до этого времени холера вызывала эпидемии в ограниченном регионе полуострова Индостан. Основными воротами для прорыва возбудителя в Европу были некоторые регионы Ближнего Востока, Египет и порты Средиземноморья. На поиски возбудит ...