Материалы » Некоторые представления о биохимии живой клетки » РНК — однонитевые полимеры с массой до 4 миллионов дальтон

РНК — однонитевые полимеры с массой до 4 миллионов дальтон
Страница 1

В начале 60-х годов появились и первые сведения об участниках самого процесса белкового синтеза. В цитоплазме клеток были обнаружены молекулы рибонукленовой кислоты («РНК»), очень похожие по своему составу и строению на ДНК. Они представляют собой тоже цепочки чередования четырех нуклеотидов — таких же, как в ДНК, за исключением одного из них, впрочем, отличающегося лишь незначительно. Главное отличие заключается в том, что в состав нуклеотидов ДНК входит некий «сахар» — дезоксирибоза, а в нуклеотидах РНК его место занимает рибоза, имеющая на одну ОН-группу больше.

Часть молекул цитоплазменных РНК оказались довольно крупными и нестабильными («короткоживущими»). Притом определенно однонитевыми. Поскольку в клетке синтез одних ферментов может сменять синтез других (рост, изменение питания и пр.), в этих нестабильных молекулах РНК заподозрили переносчиков наследственной информации от ДНК к белку. Их назвали «информационными» (иРНК). Гипотеза о механизме редупликации ДНК подсказывала возможный способ считывания и переноса этой информации. Можно было предположить, что на участке ДНК, кодирующем синтез определенного белка (на участке «гена»), по шаблону нити, которую мы ранее назвали «защитной», синтезируется молекула иРНК. Очевидно, что последовательность нуклеотидов в ней будет точно повторять последовательность кодирующей нити. Таким образом, информация на синтез определенного белка перейдет на иРНК, и вместе с ней может быть из ядра перенесена в цитоплазму. Разумеется, в этом случае нити ДНК тоже должны разойтись, хотя бы на участке гена.

Кроме крупных молекул иРНК (ген может насчитывать несколько тысяч нуклеотидов) в цитоплазме были найдены малые (длиной менее сотни нуклеотдиов) и стабильные молекулы РНК. Им приписали роль переносчиков аминокислот к месту синтеза белка и потому назвали «транспортными» (тРНК).

Само место синтеза были основания связать с обнаруженными в цитоплазме с помощью электронного микроскопа довольно крупными, — порядка 25 тр. в диаметре, — частицами, которые были названы «рибосомами». (В их составе оказались и белки, и какие-то еще специфические РНК.) Однако до ясного понимания механизмов ферментативного катализа, редупликации ДНК и белкового синтеза было еще очень далеко.

Впрочем, одно поразительное открытие было уже сделано. Хотя описанные выше представления об основных процессах жизнедеятельности еще были только рабочими гипотезами, обоснование этих гипотез можно было с равным успехом почерпнуть из изучения любых живых организмов от бактерий до человека. Во всех случаях белки, ДНК и РНК имеют примерно одинаковый элементарный состав и представляют из себя одинаково построенные цепи соответственно из 20-ти свободно чередующихся аминокислот или 4-х нуклеотидов. Даже размеры белков, несмотря на различие размеров целых организмов, оказались одного порядка величины. (Чего нельзя сказать о ДНК, что и понятно, поскольку необходимое количество наследственной информации напрямую связано со сложностью организма). Было показано, что целый ряд ферментов, катализирующих одни и те же реакции в клетках высших и низших организмов, по своим физическим и химическим параметрам похожи друг на друга. И даже порой оказывались взаимозаменяемыми в реакциях, осуществляемых «in vitro» (в пробирке). Имелись также достаточные основания предполагать, что редупликация ДНК и синтез белка в любых живых клетках происходят сходным образом. Природа оказалась очень экономной в отборе средств реализации жизни!

Все изложенное выше показывает, что хотя к середине прошлого века наука о молекулярной природе жизни («молекулярная биология») достигла немалых успехов, перед ней встал целый ряд трудных проблем. Для понимания работы ферментов надо было найти способы выделения и очистки индивидуальных белков, затем расшифровать всю последовательность образующих эти белки аминокислот. Для каждого из ферментов определить его пространственную структуру, состав и конфигурацию активного центра. Для проверки гипотезы генетического кода необходимо было найти способы тщательной очистки ДНК, определения последовательности нуклеотидов в ней и границ генов. Еще более сложные задачи предстояло решить для понимания механизмов редупликации ДНК, считывания наследственной информации, зашифрованной в генах, способа передачи ее к местам синтеза белка (рибосомам?) и, наконец, самого механизма этого синтеза, управляемого последовательностью кодирующих троек (?) нуклеотидов в гене. При этом следовало ожидать обнаружения целой гаммы специальных ферментов и регуляторных факторов, осуществляющих все эти процессы. Их предстояло выделить, очистить и всесторонне охарактеризовать.

Страницы: 1 2


Действие на желудочно-кишечный тракт
Простагландины тормозят желудочную секрецию, но стимулируют секрецию поджелудочной железы и секрецию слизи в кишечнике, а также заметно усиливают моторику кишечника. Стимулируя кишечную аденилатциклазу, простагландины могут ингибировать поступление Na+ в клетки слизистой оболочки, что сопровождается увеличением секреции Сl-. Эти эффекты ...

Исследование ЭДТА-индуцированной ассимиляции глюкозы штаммом LPM-4 в процессе длительного культивирования с добавлением глюкозы
Описание: культуру выращивали на среде, содержащей ЭДТА и глюкозу (вариант 4 – контроль). Потребление глюкозы в контроле началось только после потребления ЭДТА, т.е. на четвертые сутки, и закончилось на девятые сутки (рис. 3.2.2.1, приложение 10). При этом наблюдалось увеличение биомассы от 0,075 г/л до 0,507 г/л. Затем после потреблени ...

Клеточная инженерия у растений
Клеточная инженерия у растений заключается в получении растений из одной клетки, а также в генетических манипуляциях с изолированными клетками, направленными на преобразование их генотипов. Метод получения растений из одной клетки основан на способности тканей растений ряда видов к неорганическому росту на специальных искусственных сре ...