Введение

К середине XX века биохимия добилась выдающихся успехов в изучении живых объектов на молекулярном уровне, то есть на уровне химических реакций, обеспечивающих жизнедеятельность. Эти успехи вооружили медицину способами диагностики заболеваний и контроля за их течением посредством химических анализов крови, мочи, желудочного сока и других выделений организма человека. В этих жидкостях определяли содержание интересующих врача сравнительно небольших молекул или суммарного белка.

Что же касается создания лекарств, то здесь в основном приходилось исходить из многовекового опыта человечества по использованию лекарственных растений. Процесс поиска нового лекарства начинался с идентификации химического соединения, играющего лечебную роль в составе апробированного растения. Далее следовала разработка методик лабораторного синтеза этого соединения и его аналогов и оценка лечебного действия каждого из полученных таким образом веществ. Нередко синтезированные аналоги оказывались намного эффективнее, чем экстракты из исходных растений. Однако вся фармакология продолжала опираться только на лечебную практику, обеспеченную самой природой. В некоторых, иногда редких, а иногда и очень частых случаях заболеваний (например, раковых) природное обеспечение способов лечения отсутствовало, и медицина оказывалась бессильной. Стало ясно, что подлинная революция в ней произойдет в результате понимания на молекулярном уровне всего множества сложных химических процессов, идущих в живой клетке. Тогда откроется перспектива целенаправленной корректировки этих процессов с помощью химических соединений, синтезированных в лаборатории на основе такого понимания.

Попробуем вкратце рассмотреть некоторые представления о биохимии живой клетки, как они сложились к началу 50-х годов прошлого столетия прочную «третичную структуру» фермента, так и расположение каталитического, или, как говорят, «активного» центра на поверхности его глобулы. Наконец, что же может представлять из себя сам активный центр? Да ничего иного, кроме строго фиксированного пространственного расположения все тех же свободных и химически активных групп атомов аминокислот, поскольку ничего другого в составе белка, как правило, нет. Скольких аминокислот? Ниже мы увидим, что химическая структура всех аминокислот такова, что любая из них имеет только одну потенциально активную и свободную химическую группу. Силы связывания субстратов ферментативной реакции в активном центре должны быть невелики — ведь продукты реакции должны иметь возможность легко его покинуть. Разумно было предположить, что для удержания субстратов в активном центре на время протекания каталитической реакции достаточно трех-пяти слабых связей. Это означает, что в состав активного центра входит такое же количество аминокислот. Они (так же, как связующие глобулу аминокислоты) могут принадлежать к весьма удаленным друг от друга звеньям белковой цепи фермента, оказавшимся рядом на его поверхности. Мало того. Пространственное расположение активных групп этих аминокислот должно оказаться строго определенным для того, чтобы соответствовать пространственной конфигурации молекулы субстрата (или субстратов).


Окрашенные препараты
Для приготовления окрашенных препаратов из исследуемого объекта готовят мазки и фиксируют их. Отбор материала. Тампоны, содержащие микроорганизмы, прокатывают по предметному стеклу (рис. 1-8, А); с их помощью также готовят мазки из непрозрачных жидкостей, например взвеси испражнений (рис. 1-8, Б). Мазки из материалов со слизистой ил ...

Физическое и психическое развитие
Жизненный путь человека — это история формирования и развития личности в определенном обществе, современника определенной эпохи и сверстника определенного поколения. Вместе с тем фазы жизненного пути датируются историческими событиями, сменой способов воспитания, изменениями образа жизни и системы отношений, суммой ценностей и жизненной ...

Показатели ВЕ в капиллярной крови пловцов до, во время физической нагрузки и в периоде раннего восстановления
На дорабочем уровне в капиллярной крови пловцов отмечался избыток буферных оснований – ВЕ, – что указывает на высокое развитие щелочных резервов. При выполнении физической работы выявлен существенный дефицит ВЕ, так как возникла необходимость в поддержании гоместаза в условиях закисления. После нагрузки в крови спортсменов происходило ...