Фотосинтез » Фотосинтез

Фотосинтез
Страница 2

Молекула P680, потерявшая свои электроны, заменяет их электронами донора. Как известно, таковым в аэробном фотосинтезе является вода. Когда электроны молекулы воды поступают к P680, молекула диссоциирует на протоны и кислород. Это окислительное расщепление молекул воды осуществляется под влиянием энергии солнечного света – фотолиз. Ферменты, ответственные за фотолиз воды, располагаются на внутренней стороне мембраны тилакоидов. Таким образом, фотолиз воды участвует в создании градиента протонов через мембрану, где высокая концентрация протонов оказывается во внутреннем пространстве тилакоидов. Протонный градиент способствует синтезу АТФ из АДФ и фосфата в ходе фотофосфорилирования.

В фотосистеме I энергия света "уловленная" антенными пигментами фотосистемы, поступает в реакционный центр P700. От P700 электроны передаются на электронный акцептор P430, который представляет белок, содержащий железо и серу. P430 передает свой электроны на другой железосеросодержащий белок – ферредоксин, а последний – на кофермент НАД, который восстанавливается до НАД *Н2. Молекула P700 в ходе процесса окисляется, но затем восстанавливает потерянные электроны за счет электронов, поступающих по электронотранспортной цепи от фотосистемы II. Таким образом, на свету электроны перемещаются от воды к фотосистемам II и I, а затем к НАД. Этот однонаправленный поток называется нециклическим потоком электронов, а образование АТФ, которое при этом происходит, - нециклическим фотофосфорилированием.

Фотосистема I может работать независимо от фотосистемы II. Этот процесс называют циклическим потоком электронов.

В ходе процесса не происходит фотолиза воды, выделение O2 и образование НАД*Н2, однако образуется АТФ.

У эукариотических клеток циклическое фотофосфорилирование осуществляется достаточно редко, в тех случаях, когда клетка с избытком снабжается восстановителем в форме НАД*Н2 извне, из других клеток или из других компартментов клетки.

На второй (темновой) стадии фотосинтеза химическая энергия, запасенная в ходе световой реакции, используется для восстановления углерода. Углерод доступен для фотосинтезирующих клеток в виде диоксида углерода, причем водоросли, багрянки и оксифотобактерии усваивают CO2, растворенный в воде. У растений диоксид углерода поступает к фотосинтезирующим клеткам через устьица.

Восстановление углерода происходит у эукариот в строме хлоропластов в цикле реакций – цикл Кальвина.

Исходное соединение цикла Кальвина – пятиуглеродный сахар, фосфорилированный двумя фосфатными остатками – рибулозо-1,5-биофосфат (РБФ). CO2 входит в цикл и фиксируется на РБФ. Образуемое при этом шестиуглеродное соединение затем расщепляется на две молекулы 3-глицерофосфата, или 3-фосфоглицерата. Каждая молекула 3-глицерофосфата содержит 3 атома углерода, в силу чего другое название цикла Кальвина – C3-путь. Катализирует эти ключевые реакции фермент рибулозобисфосфаткарбоксилаза. Он располагается на поверхности тилакоидов. В течение каждого оборота цикла одна молекула CO2 восстанавливается, а молекула РБФ регенерируется и вновь может участвовать в следующем аналогичном цикле.

Шестиуглеродный сахар глюкоза в конечном итоге образуется в результате шести оборотов цикла, которые ведут к "поглощению" 6 молекул CO2.

Цикл Кальвина - не единственный путь фиксации углерода в темновых реакциях. У некоторых растений первый продукт фиксации CO2 – не трехуглеродная молекула 3-глицерофосфата, а четырехуглеродное соединение – оксалоацетат. Отсюда этот путь фотосинтеза получил название C4-путь. Оксалоацетат затем быстро превращается либо в малат, либо в аспартат, которые переносят CO2 к РБФ цикла Кальвина. У C4-растений начальные этапы фотосинтеза осуществляются по преимуществу в клетках обкладок проводящих пучков, а C3-путь – в клетках мезофилла. C4-растения используют оба пути фотосинтеза, но они в пределах одного растения пространственно разделены. C4-растения более экономно утилизируют CO2, чем C3-растения. C4-растения обладают способностью поглощать CO2 с минимальной потерей воды. Кроме того, у C4-растений практически отсутствует фотодыхание – процесс выделения CO2 и поглощение O2 на свету.

Помимо C3 - и C4-путей, известен еще так называемый метаболизм органических кислот по типу толстянковых (САМ-метаболизм). Растения, фотосинтезирующие по САМ-типу, могут фиксировать CO2 в темноте с помощью фермента фосфоенолпируваткарбоксилазы, образуя яблочную кислоту, которая запасается в вакуолях. В течение последующего светового периода яблочная кислота декарбоксилируется и CO2 присоединяется к РБФ цикла Кальвина в пределах той же клетки. САМ-метаболизм обнаружен у многих суккулентных пустынных растений, у которых устьица открыты в ночное время и закрыты днем.

Страницы: 1 2 3


Активность ФМСФ-ингибируемой КП в тканях крыс при введении диазепама. Влияние однократного введения диазепама на активность ФМСФ-ингибируемой КП в тканях крыс.
Введение диазепама вызывало достоверные изменения активности ФМСФ-ингибируемой КП во всех изученных тканях (рис. 3). В гипофизе через 4 и 72 часа активность фермента была ниже на 24 и 49% соответственно, чем у контроля. Через 24 и 72 часа в гипоталамусе наблюдалось снижение активности ФМСФ-ингибируемой КП на 32 и 55% относительно соотве ...

Сперматогенез и оогенез
Сперматогенез – протекает в стенках разветвлённых канальцев семенника. 1) размножение – сперматогонии усиленно поглощ пит вещ-ва и дел-ся не менее 10 раз, в рез-те образ-ся свыше 1000 сперматогоний. 2) рост – в сперматогонии начинают усиливаться проц-сы ассимиляции, они увелич-ся в объёме, в ядре происходит подготовка к делению. Хром-м ...

Наследственность и генетические рекомбинации у бактерий
Преимущество микроорганизмов над другими организмами состоит, прежде всего, в высокой скорости размножения, гаплоидности и большой разрешающей способности методов генетического анализа этих организмов. Формирование на питательных средах многомиллиардных популяций бактерии в течение суток позволяет проводить быстрый и точный анализ проис ...