Фотосинтез » Фотосинтез

Фотосинтез
Страница 1

Фотосинтез – процесс образования органических веществ при участии энергии света – свойствен лишь клеткам, содержащим специальные фотосинтезирующие пигменты, главнейшими из которых являются хлорофиллы. Это единственный процесс в биосфере, ведущий к запасанию энергии за счет ее внешнего источника.

Ежегодно в результате фотосинтеза на Земле образуется, как полагают, 150 млрд т органического вещества (первичная продукция) и выделяется около 200 млн т свободного кислорода. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез, поддерживает современный состав атмосферы, необходимый для существования на Земле современных форм жизни. Помимо "подпитки" атмосферы кислородом, фотосинтез препятствует увеличению концентрации CO2, предотвращая перегрев Земли вследствие так называемого парникового эффекта. Фотосинтез – главнейшее звено биохимических циклов на Земле и основа всех цепей питания. Запасенная в продуктах фотосинтеза энергия – основной источник энергии для человечества.

Существуют два принципиально различных типа фотосинтеза:

1. Анаэробный фотосинтез – свойствен немногим фотосинтезирующим бактериям. Фотосинтезирующими пигментами у них будут главным образом бактериохлорофиллы, в основе которых, как и хлорофиллов, лежит порфириновый скелет. Кислород в ходе анаэробного фотосинтеза не выделяется. Это обусловлено отсутствием фотосистемы II и тем, что донором электронов выступает не вода, а сера, сероводород или некоторые другие органические соединения.

2. Аэробный фотосинтез – важнейший для современных условий жизни на Земле. Он характерен для всех оксифотобактерий, фотосинтезирующих протоктист и растений. Происходит он только в клетках, содержащих хлорофиллы. Чисто внешнее проявление этого процесса – выделение кислорода, поскольку донором электронов выступает вода.

Фотосинтез в растениях и фотосинтезирующих протоктистах осуществляется в хлоропластах. У оксифотобактерий хлоропластов нет. Отдельная клетка у этой группы организмов в известной мере соответствует отдельному хлоропласту. В такого рода организмах фотосистемы включены в соответствующие мембраны.

Фотосинтез включает два главнейших этапа, последовательно связанных между собой. Этап поглощения и преобразования энергии (явление, получившее название светового процесса) и этап превращения веществ (темновой процесс).

Световой процесс осуществляется в тилакоидах хлоропластов, темновой – главным образом в их строме.

Пигменты растений, участвующие в фотосинтезе, "упакованы" в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц, называемых фотосистемами. Имеется два типа фотосистем – I и II. Каждая фотосистема содержит 250-400 молекул пигментов. Все пигменты фотосистемы могут поглощать частицы световой энергии, называемые фотонами или квантами света, но только одна молекула хлорофилла данной фотосистемы может использовать поглощенную энергию в фотохимических реакциях. Эта молекула называется реакционным центром фотосистемы, а другие молекулы пигментов называются антенными, поскольку они улавливают энергию света, подобно антеннам, для последующей передачи реакционному центру.

В фотосистеме I реакционный центр образован особой молекулой хлорофилла a, обозначаемой как P700, где 700 – оптимум поглощения в нм. Реакционный центр фотосистемы II также образован молекулой хлорофилла a и обозначается индексом P680, поскольку оптимум поглощения лежит в районе 680 нм.

Фотосистемы I и II работают обычно синхронно и непрерывно, но фотосистема I может функционировать отдельно.

Все молекулы пигментов в фотосистемах способны улавливать энергию солнечного света. В случае антенных пигментов свет, поглощенный молекулами, поднимает их электроны на более высокий энергетический уровень, в конечном итоге высокоэнергетические электроны достигают реакционного центра. В случае фотосистемы II энергия света утилизируется реакционным центром P680. Возбужденные энергизированные электроны центра P680 парами переносятся на молекулу соединения, очевидно, относящегося к классу хинонов и называемого акцептором. От акцептора начинается электронный поток, в котором электроны спускаются по электронотранспортной цепи к фотосистеме I. Компонентами этой цепи являются цитохромы – белки содержащие железо и серу, хиноны и белок пластоцианин, содержащий медь. Электронотранспортная цепь между фотосистемами I и II устроена так, что АТФ может образовываться из АДФ и Ф, причем этот процесс аналогичен окислительному фосфорилированию, происходящему в митохондриях. В хлоропластах он связан с энергией света и поэтому получил название фотофосфорилирование.

Страницы: 1 2 3


Приложения
Приложение А Таблица 1 Доминирующие виды на правом берегу р. Обь у п. Половинка МЕСЯЦ ПРОЦЕНТЫ ДОМИНИРУЮЩИЕ ВИДЫ Май 23 23 21 15,8 Ankistrodesmus pseudomirabilis var. spiralis Korschik (Chlorophyta) Gonatozygon monotaenium De Bary var. monotaenium (Chlorophyta) Closterium acerosum (Schr) Ehr. f. acerosum (Chlo ...

Церебролизин и терапия ишемического инсульта
Ишемический инсульт представляет наиболее тяжелую форму ишемической патологии головного мозга и служит одной из главных причин нетрудоспособности и высокой смертности населения. Последовательность развивающихся процессов при ишемическом инсульте включает: 1. Энергетический дефицит в клетках мозга, занимающий первые минуты и первую пол ...

Гидролиз белков
В среднем ежесуточный прием белка должен составлять 80-100 г, из них до 30 - белки животного происхождения. Основные источники белка - это мясные, рыбные, молочные и зернобобовые продукты. Больше всего белка содержится в сырах (25%), горохе и фасоли (22-23%), в различных видах мяса, рыбы и птицы (16-20%), в яйцах (13%), жирном твороге ( ...