Материалы » Клеточная инженерия » Клеточная инженерия. Клетоная инженерия у человека и животных

Клеточная инженерия. Клетоная инженерия у человека и животных
Страница 2

Следует отметить, что ядерно-трансплантационные работы еще не очень эффективны. Эксперименты, выполненные на земноводных и млекопитающих, в целом показали, что их результативность является небольшой, причем она зависит от несовместимости между донорскими ядрами и реципиентными овоцитами. Кроме того, препятствием на пути к успехам являются также образующиеся хромосомные аберрации в трансплантированных ядрах в ходе дальнейшего развития, которые сопровождаются гибелью трансгенных животных.

На стыке работ по изучению гибридизации клеток и иммунологических исследований возникла проблематика, связанная с получением и изучением так называемых моноклональных антител. Как отмечено выше (см. § 96), антитела, продуцируемые организмом в ответ на введение антигена (бактерии, вирусы, эритроциты и т.д.), представляют собой белки, называемые иммуноглобулинами и составляющие фундаментальную часть защитной системы организма против возбудителей болезней. Но любое чужеродное тело, вводимое в организм, представляет собой смесь разных антигенов, которые будут возбуждать продукцию разных антител. Например, эритроциты человека обладают антигенами не только для групп крови А (II) и В (III), но и многими другими антигенами, включая резус-фактор. Далее, белки клеточной стенки бактерий или капсида вирусов также могут действовать в качестве разных антигенов, вызывающих образование разных антител. В то же время лимфоидные клетки иммунной системы организма обычно представлены клонами. Значит, даже только по этой причине в сыворотке крови иммунизированных животных антитела всегда представляют собой смесь, состоящую из антител, продуцируемых клетками разных клонов. Между тем для практических потребностей необходимы антитела только одного типа, т.е. необходимы так называемые моноспецифические сыворотки, содержащие антитела только одного типа, или, как их называют, моноклональные антитела.

В поисках методов получения моноклональных антител швейцарскими исследователями в 1975 г. был открыт способ получения гибридов между лимфоцитами мышей, иммунизированных тем или иным антигеном, и культивируемыми опухолевыми клетками костного мозга. Такие гибриды получили название "гибридомы". От "лимфоцитарной" части, представленной лимфоцитом одного клона, одиночная гибридома наследует способность вызывать образование необходимых антител, причем одного типа, а благодаря "опухолевой (миеломной)" части она становится способной, как и все опухолевые клетки, бесконечно долго размножаться на искусственных питательных средах, давая многочисленную популяцию гибридом. Линии мышиных клеток, синтезирующих моноклональные антитела, выделяют путем слияния миеломных клеток с лимфоцитами из селезенки мыши, иммунизированной за пять дней до этого желаемым антигеном. Слияние клеток достигают смешиванием их в присутствии полиэтиленгликоля, который индуцирует слияние клеточных мембран, а затем в высеве их на питательную среду, позволяющую рост и размножение только гибридных клеток (гибридом). Размножение гибридомы разводят в жидкой среде, где они растут далее и секретируют антитела в культуральную жидкость, причем только одного типа, к тому же в неограниченных количествах. Эти антитела получили название моноклональных.

Чтобы повысить частоту образования антител, прибегают к клонированию гибридом, т.е. к селекции отдельных колоний гибридом, способных вызывать образование наибольшего количества антител желаемого типа. Моноклональные антитела нашли широкое применение в медицине для диагностики и лечения ряда болезней В то же время важнейшее преимущество моноклональной технологии заключается в том, что с ее помощью могут быть получены антитела против материалов, которые невозможно очистить. Напротив, можно получить моноклональные антитела против клеточных (плазматических) мембран нейронов животных. Для этого мышей иммунизируют выделенными мембранами нейронов, после чего их селезеночные лимфоциты объединяют с миеломными клетками, а дальше поступают, как описано выше.

Страницы: 1 2 


Использование инбридинга в животноводстве
Спаривание животных, находящихся в родственных отношениях, назыв инбридингом. Виды: 1) смешивание родства (брат х сестра, бабка х внук, внучка х дед). 2) близкий инбридинг (степень родства: II x III, III x II, IV x I, I x IV, III x III). 3) умеренный (III x IV, IV x III, IV x IV), 4) отдалённый (спариваются родственники в пятом поколени ...

Результаты и обсуждение
Результаты исследования активности КПН и ФМСФ-КП в гипофизе, гипоталамусе, стриатуме, больших полушариях, четверохолмии и надпочечниках под влиянием пирроксана представлены на двух диаграммах. В ходе проведения эксперимента было установлено, что получение животными пирроксана приводит к существенному снижению активности ферментов о ...

Статистическая обработка результатов исследования
Достоверность отличий между средними определяли с использованием t-критерия Стьюдента [37]. Корреляционный и дисперсионный анализы проводили с помощью программы Statgraphics (версия 3.0) (“STSC, Inc.” США) в режимах Simple Correlation, One-Way ANOVA и Multifactor ANOVA. Принадлежность подгрупп животных к разным гомогенным группам оценив ...