Материалы » Клеточная поверхность - рецепторы, рециклирование мембран и передача сигналов » Гемагглютинин вируса гриппа – наиболее полно охарактеризован ная гликопротеиновая структура

Гемагглютинин вируса гриппа – наиболее полно охарактеризован ная гликопротеиновая структура

Этот белок связан с вирусной мембраной с помощью короткого трансмембранного домена на С-конце. Он синтезируется как единая полипептидная цепь, но при созревании претерпевает протеолитическое расщепление с образованием двух полипептидов, HAi и НА2, связанных дисульфидной связью. Участок, отвечающий за слияние, локализован на N‑конце НА2. Он соответствует N‑концу G‑белка вируса везикулярного стоматита.

С помощью рентгеновской кристаллографии была определена трехмерная структура водорастворимого домена гемагглютинина. Этот домен получают с помощью расщепления бромелаином. Он представляет собой трнмер из – субъединиц, напоминает по форме стержень и выступает из мембраны на 135 А. Каждая субъединица имеет а-спиральный «стебель» с глобулярной «верхушкой», которая содержит рецепторыый участок для сиалогликосоединений.

Гидрофобный фузионный пептид спрятан между субъединицами тримера и находится на расстоянии 30 А от поверхности мембраны. Как известно, при низких рН третичная и четвертичная структуры белка необратимо изменяются. При рН 5,0 белок приобретает способность связывать липиды и детергенты и самоагретируется, что позволяет думать об экспонировании гидрофобного домена. По-видимому, это коррелирует с экспонированием фузионного пептида, который теперь может связаться с мембраной-мишенью, способствуя сближению обеих мембран и облегчая их слияние. Были выделены и получены in vitro мутанты с другими рН-оптнмумом и фузноинымн свойствами. Это подтверждает важность контактирования субъединиц при рН-зависимом конформационном изменении структуры белка и роль фузионного пептида. Гемагглютинин ацилирован жирными кислотами, которые, по-видимому, усиливают фузионную активность.

Суммируя все сказанное выше, можно сделать вывод, что, хотя физико-химические механизмы слияния мембран до конца не установлены, очевидно, что специфическое слияние мембран внутри клетки может осуществляться с помощью некоего белокзависимого процесса. Для этого должно произойти специфическое межмембранное взаимодействие, обеспечивающее прикрепление мембран друг к другу, и должен присутствовать мембранный белок, который при необходимости обеспечивает слияние. Для изучения свойств таких белков можно использовать белки, образующие шиловидные структуры вирусных частиц. Но могут применяться и другие модельные системы. Вероятно, семейство таких белков участвует в слиянии мембран как при экзоцитозе, так и при эндоцитозе.


Концепция рекомбинантной ДНК
Методология получения рекомбинантных ДНК основана на тех же принципах, что и трансдукция. Молекулы ДНК, способные реплицироваться в соответствующих клетках, представленные вирусными геномами или плазмидами, служат переносчиками, или векторами, «чужеродных» сегментов ДНК, получивших название вставки. При этом, вместо того чтобы полагать ...

Клетка – элементарная единица живого организма
Все живое состоит из клеток как отдельных единиц и размножается из клеток, поэтому клетка считается мельчайшей единицей всего живого. Клетка обладает всеми признаками живого, ей свойственны раздражимость, обмен веществ, самоорганизация и саморегуляция, передача наследственных признаков. Клетка – это сложное, самоорганизующееся образован ...

Неорганическая и органическая химия. Неорганическая химия
НЕОРГАНИЧЕСКАЯ ХИМИЯ (неорганическая химия), наука о хим. элементах и образуемых ими простых и сложных веществах, за исключением органических соединений. Понятие "неорганическая химия " (минер. химия) появилось первоначально для обозначения веществ (веществ) минерального происхождения. Основные задачи современной неорганиче ...