Материалы » Отрасли применения генной инженерии » Исследование генома человека и клонирование

Исследование генома человека и клонирование
Страница 3

На этой основе можно заключить, что принципиальный ответ на вопросы «возможно ли клонирование живых организмов?» и «идентичны ли друг другу клонированные особи?» получены. На первый - ответ положительный, на второй, очевидно, отрицательный.

В эмбриологии, например, тоже известны методы получения клонов. Если зародыш морского ежа на стадии раннего дробления искусственно разделить на составляющие его клетки - бластомеры, то из каждого разовьется целый организм. В ходе последующего развития зародышевые клетки теряют эту способность и становятся все более и более специализированными. Можно также использовать ядра так называемых стволовых эмбриональных клеток от какого-нибудь конкретного раннего эмбриона, которые еще не являются очень специализированными (таковым будет их потомство). Эти ядра пересаживаются в яйцеклетки, из которых удалено собственное ядро, и такие яйцеклетки, развиваясь в новые организмы, опять-таки могут образовать клон генетически идентичных животных. У человека известны случаи своеобразного «естественного» клонирования - это так называемые однояйцовые близнецы, которые возникают благодаря редко встречающемуся естественному разделению оплодотворенной яйцеклетки на два отделяющихся друг от друга и в последующем самостоятельно развивающихся бластомера. Они очень похожи друг на друга, но все же не идентичны.

Обратимся к истории генетики и первым опытам по клонированию живых организмов, ставших известными широкой публике.

Все началось с опытов российского эмбриолога Г.В. Лопашова, который ещё в 40-х гг. разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. Но огласки опыты не получили (в то время советская биология была подвластна печально известному Трофиму Лысенко), и только десятилетие спустя американские и английские биологи начали выполнять опыты на основе работ Лопашова. Они добились развития яйцеклеток с чужим ядром до достаточно поздних стадий. И вот 1 - 2 процента особей проходили стадию метаморфоза и превращались во взрослых лягушек. Впрочем, такие лягушки оказывались не без дефектов, да и выглядели более хилыми по сравнению со своим «родителем» (донором ядра), так что даже в этом случае едва ли можно говорить об абсолютно точном копировании.

Тогда и заговорили о клонировании млекопитающих и человека: если можно клонировать лягушку, почему бы не попробовать то же самое на других объектах. Первый форум, на котором всерьез рассматривалась проблема клонирования животных, был Международный генетический конгресс в Беркли (США) в августе 1973 года.

Примерно в то же время была опубликована статья Карла Иллмензее, из которой следовало, что ему удалось получить клон из трех мышек. После создания авторитетной комиссии на работе Иллмензее был поставлен крест: ее признали недостоверной. Таким образом, по самой проблеме был нанесен весьма болезненный удар, оказалась под сомнением ее разрешимость.

Внимание к клонированию, таким образом, ослабло на некоторое время. Но появилось сообщение о рождении овечки Долли, что вызвало небывалый интерес к этому вопросу. Только тогда мало кто обратил внимание на то, что в экспериментах Яна Вильмута, «автора» Долли, процент выхода рожденных животных оказался ничтожно мал - всего одна овечка из 236 попыток.

Клонированная овца Долли родилась в 1996 г., а 23 февраля 1997 года создатели клонированной овцы огласили факт ее существования. В 1999 году исследователи заметили, что клетки Долли выглядят более старыми, чем у ее сверстников, рожденных естественным путем. Уже тогда некоторые генетики предположили, что при клонировании вместе с генами передается и «возраст». Сейчас эта гипотеза получает весомое подтверждение. Дело в том, что "генетической матери" Долли овечки на момент клонирования было 6 лет. Чуть более наукоподобное объяснение тому, что клонированные животные умирают в расцвете сил, дает журнал Newscientist. Как утверждает издание, у первых клонированных овец цепочка ДНК была короче, чем у животных, появившихся на свет естественным путем. Из нее были исключены гены группы теломеров (telomeres), отвечающие за так называемые "генетические часы", которые определяют запрограммированную природой продолжительность жизни организма. Теоретически подобная операция должна была продлить жизнь клонам, но на практике был выявлен обратный эффект. Впрочем, цепочка ДНК нормальной длины также не способна продлить жизнь клонированным животным. Японские ученые под руководством профессора Atsuo Ogura клонировали 12 мышей. Клоны полностью соответствовали своим суррогатным родителям по всем генетическим и биологическим показателям, казались активными и здоровыми, развивались совершенно нормально. В то же время, к 800 дню наблюдений 10 из двенадцати животных были уже мертвы. В группе обычных мышей к тому времени умерли только трое . Таким образом, дать внятного объяснения феномена преждевременной смертности клонов пока не может никто. Ученые говорят, что в ближайшие годы технология клонирования должна оставаться исключительно на уровне лабораторных экспериментов. Говорить о ее промышленном использовании и тем более - о применении клонирования в медицине человека, пока преждевременно. Чучело овечки Долли навеки займет свое место в музее шотландского Института Рослина (Roslin Institute). Парадоксально, но факт: именно такой эффект наблюдают сейчас ученые, проводящие эксперименты на мышах: каждое новое поколение потомков клонированных животных живет все меньше и меньше . Сегодня особый интерес вызывают опыты группы ученых из университета в Гонолулу во главе с Риузо Янагимачи. Авторы сумели усовершенствовать метод Вильмута: они отказались от электрической стимуляции слияния донорской соматической клетки с яйцеклеткой и изобрели такую микропипетку, с помощью которой удалось «безболезненно» трансплантировать ядро (опыты проводились на мышах). Кроме того, они использовали в качестве донорских ядра клеток, окружающих яйцеклетку. Процент «выхода» рожденных мышат (их извлекали с помощью кесарева сечения) был в разных сериях от 2 до 2,8. Молекулярные исследования, как и в случае с Долли, подтвердили: мышата - продукт клонирования. Таким образом, по крайней мере в некоторых случаях доказана способность ядер соматических клеток обеспечивать нормальное развитие млекопитающих.

Страницы: 1 2 3 4


Светооптическая микроскопия
Для световой микроскопии применяют микроскоп — оптический прибор, позволяющий наблюдать мелкие объекты (рис. 1-1). Увеличение изображения достигают системой линз конденсора, объектива и окуляра. Конденсор, расположенный между источником света и изучаемым объектом, собирает лучи света в поле микроскопа. Объектив создаёт изображение пол ...

Жидкости человеческого организма
Человеческое тело, подобно пчелиным сотам, состоит из множества клеток, разделенных микроскопическими промежутками, по которым циркулирует тканевая жидкость. В нашем организме происходит непрерывный водный обмен с участием крови, межклеточных и тканевых жидкостей. Кровь (состоящая из воды на 60%) доставляет в растворенном виде необходи ...

Составьте схему «Гипотезы возникновения жизни на Земле». Какие из них относятся к сфере научных исследований?
Теории, касающиеся возникновения Земли, да и всей Вселенной, разнообразны и далеко не достоверны. Согласно теории стационарного состояния, Вселенная существовала извечно. Согласно другим гипотезам, Вселенная могла возникнуть из сгустка нейтронов в результате. «Большого взрыва», родилась в одной из черных дыр или же была создана Творцом. ...