Методы 6-мерного поиска
Страница 1

При использовании моделей плохого качества (например, в случае низкой гомологии) или моделей описывающих лишь малую часть неизвестной структуры часто возникает ряд проблем, затрудняющих решение задачи молекулярного замещения обычными методами. Значительные ошибки функции вращения, неизбежно возникающие в таких случаях, усугубляют собственные ошибки функции трансляции и приводят либо к полному отсутствию правильных решений, либо к тому, что эти решения оказываются среди максимумов, лежащих на уровне шума и нет достоверных критериев позволяющих однозначно выделить их среди прочих.

Единственным на сегодняшний день общим подходом, позволяющим решать вышеперечисленные проблемы и до определенной степени расширить границы применимости метода молекулярного замещения, является отказ от разделения задачи на поиск решений функций вращения и трансляции и применение процедуры 6-мерного поиска с одновременным варьированием как углов Эйлера (α,β,γ), так и компонент вектора трансляции (v

x,v

y,v

z). Но, несмотря на значительный прогресс вычислительной техники, ни в одной из существующих программ, включая самые современные, 6-мерный поиск не проводится напрямую, как систематический поиск на 6-мерной сетке. Таким образом, ни одна из существующих программ не гарантирует нахождения абсолютных максимумов объединенной функции вращения-трансляции.

Не так давно, двумя группами независимо были предложены стохастические алгоритмы 6-мерного поиска, которые позволили создать программы, ставшие стандартным инструментом в рентгеновской кристаллографии макромолекул:

1) В работе Киссинджера и др. [26] был применен так называемый эволюционный алгоритм, который принадлежит к семейству алгоритмов стохастической оптимизации, включающему такие методы как Монте-Карло [28] и медленный отжиг [25].

2) Генетический алгоритм, независимо предложенный Чангом и Льюисом [14], основан на том же самом принципе, что и эволюционный и отличается от последнего лишь некоторыми деталями реализации. Подобный подход применялся также для разработки процедуры поиска положений тяжелых атомов в тяжелоатомных производных кристаллов макромолекул [13] и в прямых методах расчета фаз для кристаллов вирусных частиц [29].

Эволюционный алгоритм использует принцип естественного отбора для нахождения оптимальных решений. Вначале генерируется набор случайных решений, задающих одновременно и ориентацию и положение модели в элементарной ячейке. Затем рассчитываются структурные факторы F

m для каждого решения и производится отбор лучших решений исходя из коэффициента линейной корреляции [26].

Отобранные решения сохраняются и используются для создания нового набора с тем же количеством элементов, что и в предыдущем. Недостающие элементы нового набора получают, внося в ориентации и положения отобранных решений случайные изменения в соответствии с нормальным распределением. Таким образом, плотность распределения элементов нового набора уже не будет равномерной, а будет иметь максимумы в окрестностях отобранных решений. Затем снова происходит расчет структурных факторов F

m, отбор лучших решений, создание следующего набора, и так далее, пока не будет получено решение с некоторым оптимальным значением коэффициента линейной корреляции. На последней стадии, для лучшего отобранного решения проводится оптимизация ориентации и положения модели как твердого тела по методу сопряженных градиентов [33].

Скорость 6-мерного поиска с использованием эволюционного алгоритма значительно увеличивается за счет применения метода непрерывных преобразований структурных факторов [14, 26]. В этом методе структурные факторы рассчитываются один раз с помощью быстрого преобразования Фурье (FFT) для модели, помещенной в начало координат искусственной ячейки симметрии P1. В ходе 6-мерного поиска, изменение ориентации модели учитывается путем ортогональных преобразований индексов обратной решетки и использования линейной интерполяции в обратном пространстве. Изменение положения модели учитывается применением соответствующих фазовых сдвигов. При этом, принимаются во внимание вклады всех симметрически связанных молекул.

Страницы: 1 2


Птицы
Классы птиц и млекопитающих, являющиеся вершиной эволюции позвоночных, возникли независимо друг от друга. Уже в триасе от зверозубых ящеров отделились первые примитивные млекопитающие. В конце триаса — начале юры появились летающие ящеры. Птицеящеры (археоптериксы) дали начало птицам. Первые млекопитающие и первые птицы заселяли не осв ...

Методы исследования. Метод введения половых стероидных гормонов
При изучении влияния половых гормонов на КП Н и ФМСФ-ингибируемую карбоксипептидазу in vivo все препараты вводились внутрибрюшинно в виде растворов в оливковом масле. Вводимый объем был равен 0,1 мл. Дозы половых гормонов были следующими: 1) 3 и 30 мг на кг массы в случае пропионата тестостерона; 2) 1 и 10 мг на кг массы в случае прогес ...

Теория относительности Эйнштейна
В 1905 году Эйнштейн в работе «К электродинамике движущих сред» сформулировал два предположения, которые в современной науке именуются постулатами теории относительности». 1. Принцип относительности: все законы природы одинаковы во всех инерциальных системах отчета; 2. Принцип постоянства скорости света: скорость света в пустоте одина ...