Методы 6-мерного поиска
Страница 1

При использовании моделей плохого качества (например, в случае низкой гомологии) или моделей описывающих лишь малую часть неизвестной структуры часто возникает ряд проблем, затрудняющих решение задачи молекулярного замещения обычными методами. Значительные ошибки функции вращения, неизбежно возникающие в таких случаях, усугубляют собственные ошибки функции трансляции и приводят либо к полному отсутствию правильных решений, либо к тому, что эти решения оказываются среди максимумов, лежащих на уровне шума и нет достоверных критериев позволяющих однозначно выделить их среди прочих.

Единственным на сегодняшний день общим подходом, позволяющим решать вышеперечисленные проблемы и до определенной степени расширить границы применимости метода молекулярного замещения, является отказ от разделения задачи на поиск решений функций вращения и трансляции и применение процедуры 6-мерного поиска с одновременным варьированием как углов Эйлера (α,β,γ), так и компонент вектора трансляции (v

x,v

y,v

z). Но, несмотря на значительный прогресс вычислительной техники, ни в одной из существующих программ, включая самые современные, 6-мерный поиск не проводится напрямую, как систематический поиск на 6-мерной сетке. Таким образом, ни одна из существующих программ не гарантирует нахождения абсолютных максимумов объединенной функции вращения-трансляции.

Не так давно, двумя группами независимо были предложены стохастические алгоритмы 6-мерного поиска, которые позволили создать программы, ставшие стандартным инструментом в рентгеновской кристаллографии макромолекул:

1) В работе Киссинджера и др. [26] был применен так называемый эволюционный алгоритм, который принадлежит к семейству алгоритмов стохастической оптимизации, включающему такие методы как Монте-Карло [28] и медленный отжиг [25].

2) Генетический алгоритм, независимо предложенный Чангом и Льюисом [14], основан на том же самом принципе, что и эволюционный и отличается от последнего лишь некоторыми деталями реализации. Подобный подход применялся также для разработки процедуры поиска положений тяжелых атомов в тяжелоатомных производных кристаллов макромолекул [13] и в прямых методах расчета фаз для кристаллов вирусных частиц [29].

Эволюционный алгоритм использует принцип естественного отбора для нахождения оптимальных решений. Вначале генерируется набор случайных решений, задающих одновременно и ориентацию и положение модели в элементарной ячейке. Затем рассчитываются структурные факторы F

m для каждого решения и производится отбор лучших решений исходя из коэффициента линейной корреляции [26].

Отобранные решения сохраняются и используются для создания нового набора с тем же количеством элементов, что и в предыдущем. Недостающие элементы нового набора получают, внося в ориентации и положения отобранных решений случайные изменения в соответствии с нормальным распределением. Таким образом, плотность распределения элементов нового набора уже не будет равномерной, а будет иметь максимумы в окрестностях отобранных решений. Затем снова происходит расчет структурных факторов F

m, отбор лучших решений, создание следующего набора, и так далее, пока не будет получено решение с некоторым оптимальным значением коэффициента линейной корреляции. На последней стадии, для лучшего отобранного решения проводится оптимизация ориентации и положения модели как твердого тела по методу сопряженных градиентов [33].

Скорость 6-мерного поиска с использованием эволюционного алгоритма значительно увеличивается за счет применения метода непрерывных преобразований структурных факторов [14, 26]. В этом методе структурные факторы рассчитываются один раз с помощью быстрого преобразования Фурье (FFT) для модели, помещенной в начало координат искусственной ячейки симметрии P1. В ходе 6-мерного поиска, изменение ориентации модели учитывается путем ортогональных преобразований индексов обратной решетки и использования линейной интерполяции в обратном пространстве. Изменение положения модели учитывается применением соответствующих фазовых сдвигов. При этом, принимаются во внимание вклады всех симметрически связанных молекул.

Страницы: 1 2


Действие на сердечно-сосудистую систему
Внутривенное введение PGE1 или PGE2 увеличивает кровоток путем общего расширения сосудов с уменьшением периферического сопротивления. Эти изменения находят отражение в увеличении сердечного выброса, сопровождающегося уменьшением артериального кровяного давления. При изучении факторов риска инфаркта миокарда было показано, что люди, пот ...

Свойства, строение и комплексообразование тилендиаминтетрауксусной кислоты (ЭДТА)
Этилендиаминтетрауксусная кислота (С10Н16О8N2) - четырехосновная аминокарбоксильная кислота. Молекулярный вес 292,35. Белый кристаллический порошок. Хорошо растворим в воде, образует стойкие растворы. Растворимость ЭДТА минимальна при рН 1,6-1,8, при уменьшении концентрации ионов водорода в растворе она растет и проходит через максимум ...

Роль поджелудочной железы, печени и кишечных желез в пищеварении
Процесс переваривания пищи в кишечнике происходит под действием пищеварительных соков, выделяемых поджелудочной железой, печенью и кишечными железами. Поджелудочная железа состоит из клеток двух типов: одни выделяют пищеварительный сок, другие — гормон инсулин. Поджелудочный сок, поступающий в двенадцатиперстную кишку по двум протокам, ...