Материалы » Взаимодействия белков с РНК - структурный компьютерный анализ » Отличия ДНК-белковых от РНК-белковых взаимодействий

Отличия ДНК-белковых от РНК-белковых взаимодействий

Двойная спираль ДНК – это регулярная структура, в которой наиболее существенные отличия между соседними участками заключены в последовательности пар оснований. В обоих желобках специфический сайт ДНК для узнавания белком может быть сформирован сетью водородных связей между основаниями нуклеотидов. Большой желобок спирали ДНК доступнее для контакта, что создаёт возможность для дискриминации последовательностей в нём [39]. Основанный на этом предположении механизм узнавания «прямым считыванием» был подтверждён для многих ДНК-связывающих белков. Также было отмечено потенциальное значение и «непрямого считывания». Некоторые последовательности ДНК могут иметь изменения в конформации сахаро-фосфатного остова или даже быть деформированы в необычные структуры. В таком случае специфичность связывания может определяться контактами белка с остовом ДНК [40]. Индуцированные белком нарушения структуры ДНК довольно обычны и могут варьировать по форме от небольших изгибов, как в сайте нуклеазы EcoRI, до больших изгибов и выведения оснований из стэкинга, как в комплексе с ТАТА-связывающим белком [24].

Механизм «прямого считывания» предполагает, что ДНК-белковыми контактами, определяющими специфичность связывания, являются водородные связи с основаниями и гидрофобные контакты с тиминовыми метилами, в то время как энергия неспецифического связывания обеспечивается ионными и водородными связями с сахаро-фосфатным остовом. В «непрямом считывании» могут принимать участие и другие виды взаимодействий, например, в комплексе с ТАТА-связывающим белком ДНК контактирует с гидрофобной белковой поверхностью и ароматические аминокислоты интеркалируются в спираль ДНК [24].

Молекулы РНК отличаются от ДНК несколькими особенностями, которые влияют на возможности белкового узнавания. Во-первых, в РНК участки Уотсон-Криковских спиралей часто прерываются выпячиваниями, внутренними петлями и шпильками. Исследования часто встречающихся «четырёхнуклеотидных» шпилек и консервативных внутренних и шпилечных петель рибосомной РНК, методами ЯМР и рентгеноструктурного анализа выявили специфические нерегулярные структуры, содержащие неканонические пары и выпячивания. Во-вторых, спирали РНК достаточно короткие, обычно меньше полного оборота, и имеют А-форму, отличную от В-формы ДНК. А-форма спирали имеет очень глубокий и узкий большой желобок, что создаёт стерические затруднения для взаимодействия с белками. Однако прилегающий к нерегулярным участкам большой желобок может быть доступен для связывания [41].

Следствием этих отличий является то, что белки оказываются перед значительно большим разнообразием водородных связей и возможностей стэкинга нуклеотидов в случае РНК, чем это возможно в стандартной спирали ДНК. Дополнительной и весьма важной особенностью РНК является возможность «третичных» взаимодействий, которые могут соединять различные участки РНК и создавать сложные структуры. Классическими примерами являются соединение спиралей тРНК в «L-образную» молекулу, обнаруженная в интронах группы I «аденозиновая платформа», открывающая спираль РНК для стэкинга с другой спиралью РНК [12], и структура двух взаимодействующих петлями транскриптов RNA I и RNA II плазмиды ColE1, так называемый «kissing» комплекс [27]. Тот факт, что благодаря вторичным и третичным взаимодействиям может быть создана уникальная структура РНК, повышает вероятность специфического взаимодействия белков только с сахаро-фосфатным остовом. Эта ситуация может быть крайним случаем «непрямого считывания», когда основания нуклеотидов обеспечивают белковое узнавание только определением общей конформации РНК, а не прямыми контактами с белком.

Таким образом, искажение регулярной структуры нуклеиновой кислоты, по всей видимости, более важно для узнавания РНК, чем для ДНК. Спираль ДНК довольно стабильная структура, в то время как неспаренные нуклеотиды и петли дестабилизируют структуру РНК. Комбинация богатого выбора нерегулярных структур в РНК и возможности деформации её структуры позволяют предположить, что РНК-связывающие белки будут использовать более широкий выбор стратегий связывания, чем ДНК-связывающие белки, и что механизм узнавания «непрямым считыванием» будет среди них более широко распространён.


Сверхдоминирование. Гетерозис и его использование в животноводстве
Сверхдоминирование – превосходство детей над родителями. Гетерозис - превосходство детей над родителями по продуктивности, плодовитости, жизнеспособности. Проявляется только в F1, чтобы поддерживать гетерозис в течении нескольких поколений используют особый вид скрещивания – переменная. Гетерозис получается при спаривании гомозиготных, ...

Регуляция всасывания
Она осуществляется за счет изменений процессов кровотока через слизистую кишечника, желудка, лимфотока, энергетики, а также за счет синтеза "транспортеров" (насосов и специфических переносчиков). При усилении функциональной активности ЖКТ он может возрастать в 8-10 раз. Это способствует не только увеличению продукции пищевари ...

Клеточная инженерия у растений
Клеточная инженерия у растений заключается в получении растений из одной клетки, а также в генетических манипуляциях с изолированными клетками, направленными на преобразование их генотипов. Метод получения растений из одной клетки основан на способности тканей растений ряда видов к неорганическому росту на специальных искусственных сре ...