Материалы » Генетический код » Нуклеосомы при репликации и транскрипции

Нуклеосомы при репликации и транскрипции
Страница 2

Если же исследовать хроматин в составе ядер или в виде выделенных препаратов, но при поддержании определенной концентрации двухвалентных катионов (не ниже 1мМ), то можно видеть дискретность в составе фибрилл хроматина диаметром 30 нм: она состоит как бы из сближенных глобул того же размера — из нуклеомеров. В зарубежной литературе такие 30-нанометровые глобулы, иди нуклеомеры, получили название сверхбусин («супербиды») (см. рис. 57, в и 62). Обнаружено, что если в условиях, когда нуклеомерная структура фибрилл хроматина сохраняется, препараты хроматина подвергнуть нук-леазной обработке, то часть хроматина растворяется. При этом в раствор выходят частицы, имеющие размер около 30 нм, с коэффициентом седиментации, равным 45S, в растворах, содержащих 1 мМ магния. Если такие выделенные нуклеомеры обработать ЭДТА, удалить ионы магния, то они разворачиваются в нуклеосомные цепочки, содержащие 6—8 нук-леосом. Таким образом, в состав одного нуклеомера входит отрезок ДНК, соответствующий 1600 парам оснований, или 8 нуклеосомам.

Компактность нуклеомера зависит от концентрации ионов магния и наличия гистона HI. Негистоновые белки в конформационных превращениях нуклеомеров не участвуют.

Итак, основная фибрилла хроматина диаметром 30 нм представляет собой линейное чередование нуклеомеров вдоль компактизованной молекулы ДНК (см. рис. 62). Вероятно, гистоны HI, находясь в центральной зоне этой крупной частицы и взаимодействуя друг с другом, поддерживают ее целостность. В пользу этого говорят данные о кооперативном связывании гистонов HI в группе по 6—8 молекул.

Противоречие между соленоидной и нуклеомерной моделями упаковки нуклеосом в составе фибрилл хроматина может быть снято, если принять модель нерегулярного соленоида: число нуклеосом на виток спирали не является строго постоянной величиной, что может привести к чередованию участков с большим или меньшим числом нуклеосом на виток.

Нуклеомерный уровень укладки хроматина обеспечивает 40-кратное уплотнение ДНК, что важно не только для достижения целей ком-пактизации гигантских молекул ДНК. Компактизация ДНК в составе фибрилл хроматина диаметром 30 нм может налагать дополнительные функциональные ограничения. Так, обнаружено, что в составе фибриллы хроматина диаметром 30 нм ДНК становится практически недоступной для взаимодействия с таким ферментом, как метилаза ДНК. Кроме того, резко падает способность хроматина связываться с РНК-полимеразой и рядом регуляторных белков. Таким образом, второй уровень компактизации ДНК может играть роль фактора, инакти-вирующего гены.

В заключение необходимо еще раз напомнить, что как нуклеосомный, так и нуклеомерный (супербидный) уровни компактизации ДНК хроматина осуществляются за счет гистоновых белков, которые участвуют не только в образовании нуклеосом, но и в их кооперативном объединении в виде фибрилл ДНП, где ДНК претерпевает дополнительную сверхспирализацию. Все остальные уровни компактизации связаны с дальнейшим характером укладки фибрилл диаметром 30 нм в новые ком-пактизационные уровни, где ведущую роль играют негистоновые белки.

Страницы: 1 2 


Теплота и энтропия
Энтропия вводится вторым началом термодинамики. В формулировке А. Зоммерфельда оно звучит так: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последов ...

Общие принципы хроматографии, классификация хроматографических методов
Всем хроматографическим методам присущи некоторые общие характеристики, позволяющие ниже изложить элементы их обобщенной теории. Однако сначала рассмотрим специфические особенности различных вариантов хроматографического фракционирования. Это, с одной стороны, позволит за теоретическими рассуждениями все время видеть реальные черты хром ...

Общая характеристика работы
Для успешного выращивания рододендрона в культуре и правильного его использования необходимо знать закономерности роста этого растения, сроки заложения и формирования у него почек, особенности цветения и плодоношения, отношение рододендрона к экстремальным условиям среды и многие другие вопросы биологии, которые, к сожалению, до сих пор ...