Введение

Энтропия принадлежит к числу важнейших понятий физики. Энтропия как физическая величина была введена в термодинамику Р. Клаузиусом в 1865 г. и оказалась настолько важной и общезначимой, что быстро завоевала сначала другие области физики, а затем проникла и в смежные науки: химию, биологию, теорию информации и т.д.

Понятие энтропии с самого начала оказалось трудным для восприятия в отличие, например, от другой физической величины – температуры. Эта трудность сохранилась и для тех, кто впервые знакомится с термодинамикой. Она носит чисто психологический характер и связана с невозможностью непосредственного восприятия энтропии, отсутствием «градусника», который бы измерял энтропию, как измеряют температуру.

Вместе с тем более глубокое понимание температуры, завершившееся формулировкой «нулевого начала», показывает, что понятие температуры и энтропии одинаковы по сложности. Понятие температуры вводится «нулевым началом», понятие энтропии – вторым началом[1]. Термодинамика в силу феноменологического характера не может вскрыть физический смысл, как энтропии, так и температуры. Эту задачу решает статистическая физика. Статистическая интерпретация энтропии позволила математикам обобщить понятие энтропии и ввести метрическую энтропию как абстрактную величину, характеризующую поведение неустойчивых динамических систем с экспоненциальной расходимостью близких в начальный момент времени траекторий (энтропия Крылова–Колмогорова–Синая)[2]. Метрическая энтропия – абстрактное математическое понятие, слишком далеко находящееся от практических задач.

Актуальность данной темы определяется значительной ролью понятия энтропии не только для физики, но и для биологии, синергетики, современных концепций теории информации.

Целью настоящей работы является исследование физического смысла понятия энтропии и его применения для описания реальных явлений.

В связи с поставленной целью можно формулировать следующие задачи исследования:

· дать определение термина «энтропия» и рассмотреть его связь с тепловой энергией;

· рассмотреть применимость энтропии как функции состояния термодинамической системы для описания и прогноза эволюции реальных систем.

Реферат состоит из 5 разделов. В первом сформулированы цель и задачи исследования, во втором раскрывается физический смысл энтропии, в третьем дается обзор теории тепловой смерти вселенной, в четвертом сделаны основные выводы по содержанию работы, в пятом указаны первоисточники по теме работы.


Виды ржавчины на ячмене
Линейная (стеблевая) ржавчина. Возбудитель — Puccinia graminis Pers. f. secalis Eriks. et Henn. Проявляется на ячмене так же, как и на пшенице и ржи. Желтая ржавчина. Возбудитель—Puccinia striiformis West. (син. Р. glumarum Eriks. et Henn.). Внешний тип расположения урединий и телиопустул такой же, как и при поражении этим видом ржавчи ...

Почки и их типы. Происхождение и функции покоящихся, придаточных и спящих почек
Почка представляет собой сильно укороченный побег с зачаточными листьями или репродуктивными органами. Почки могут быть вегетативные, имеющие зачатки побега и листьев; генеративные, несущие зачатки цветка или соцветия, смешанные. По местоположению различают почки верхушечные (на конце побега) и пазушные (в узлах между черешком листа и с ...

Образование лизосом
По морфологии выделяют 4 типа лизосом: 1. Первичные лизосомы 2. Вторичные лизосомы 3. Аутофагосомы 4. Остаточные тельца Первичные лизосомы представляют собой мелкие мембранные пузырьки, заполненные бесструктурным веществом, содержащим набор гидролаз. Маркерным ферментом для лизосом является кислая фосфотаза. Первичные лизосомы наст ...