Поступление и превращение азота в растениях. Поглощение азота растением
Формы азота, используемые растением. Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. В составе золы азота нет, так как при сжигании растений он образует газообразные окислы. В сухом веществе растения содержится в среднем 1,5% азота. Добывание азота представляет для растения
наибольшие трудности, так как азот не входит в состав минералов и его накопление и превращение в почве полностью связано с жизнедеятельностью организмов.
В почве доступный для растения азот находится в основном в форме нитратов аммонийных солей.
Восстановление нитратов растениями. Нитраты представляют собой окисленную форму азота и должны быть восстановлены растением до NH2, после чего они могут войти в состав аминокислот, а затем белка. Можно считать, что восстановление нитратов идет двумя путями:
1) восстановление за счет химической энергии дыхания и 2) фотохимическое восстановление в хлоропластах.
Восстановление нитратов идет этапами: сначала до азотистой кислоты HNO2, затем до гидрокисламина NH2OH и, наконец, до аммиака NH3. Восстановление нитратов до NH3-и NH2-гpyпп осуществляется с помощью фермента нитратредуктазы, в состав кофермента которой входит молибден.
Восстановленный азот нитратов или непосредственно поглощенный ион аммония, соединяясь с продуктами превращения углеводов, образует аминокислоты, а затем белки. Аммиак, реагируя с некоторыми органическими кислотами, может образовать аминокислоты. Так, например, аммиак, реагируя с пировиноградной кислотой, образует аминокислоту аланин:
Образовавшиеся белковые вещества подвергаются превращениям в теле растения. Животный организм все время выводит азот из своего тела в виде мочевины и отчасти мочевой кислоты. В отличие от животных растение очень бережно относится к азоту, не теряя его.
При прорастании семян расщепляются запасные белки, а количество конституционных белков не только не уменьшается, а все время увеличивается. Затем происходит накопление белков в связи с переходом растения к автотрофному питанию.
Роль амида, аспарагина, глютамина и мочевины в растении. При восстановлении нитратов, а также при дезаминировании аминокислот (т.е. отщеплении от них аммиака) в растениях может накопляться аммиак, который ядовит для большинства из них. В растении аммиак обезвреживается, так как он связывается аспарагиновой или глутаминовой кислотой, образуя соответственные амиды (аспарагин, глутамин). У многих низших растений образуется мочения:
Доказан и прямой синтез мочевины из углеводов и аммиака у многих грибов (дождевики, шампиньоны). Содержание мочевины у дождевиков доходит до 10,7% от сухого вещества. Таким образом, аспарагин, глутамин и мочевина играют большую физиологическую роль, так как являются соединениями, обезвреживающими ядовитое действие аммиака, а также представляют собой резерв аминогрупп NH2 в растении для синтеза аминокислот.
Подводя итоги, можно отметить два типа синтеза белков: первичный и вторичный. В обоих этих синтезах аммиак играет большую роль, что и дало возможность Д.Н. Прянишникову сказать, что аммиак есть альфа и омега (первая и последняя буквы греческого алфавита), т.е. начало и конец, превращения белков в растениях. При первичном синтезе из аммиака и углеводов строится белок (левая часть схемы). При распаде белка образуются аминокислоты, от которых при дезаминировании отщепляется аммиак, связывающийся в аспарагин или глютамин. При вторичном синтезе белков (правая и нижняя части схемы) происходит отщепление аммиака от аспарагина и образование аминокислот из углеводов (вернее, из продуктов их превращения) и аммиака. Все эти представления можно объединить в следующую схему Прянишникова:
Возникновение и эволюция жизни. Концепция происхождения жизни
Эволюция жизни предполагает ее истоки, начало. Проблема происхождения жизни является одной из важнейших не только в биологии, но и во всем естествознании и имеет важное мировоззренческое значение.
В настоящее время существует несколько теорий происхождения жизни:
1. Концепция сверхъестественного (божественного) происхождения живого кр ...
Основные этапы становления учения о дыхании растений
Научные основы учения о роли кислорода в дыхании были заложены трудами А.Л.Лавуазье. В 1774 г. кислород независимо открыли Пристли и Шееле, а Лавуазье дал название этому элементу. Изучая одновременно процесс дыхания животных и горение, Лавувзье в 1773-1783 гг. пришел к выводу, что при дыхании, как и при горении, поглощается кислород и о ...
Система удобрений в полевом севообороте
Система удобрений – комплекс агротехнических и организационно-хозяйственных мероприятий по наиболее рациональному, плановому применению удобрений в целях повышения урожайности сельскохозяйственных культур и плодородия почвы.
ОАО "Надежда" располагается в зоне недостаточного увлажнения, и поэтому желательно проводить основное ...
