Числа Фобиначчи

В математике хорошо известна последовательность чисел 1,1,2,3,5,8,13,21, ., называемая числами Фибоначчи (ряд Фибоначчи) и образуемая по рекуррентной формуле:

http://www.abc-people.com/idea/zolotsech/r8.gif

где n - натуральное число и начальные члены равны 1 и 1.

Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618 : 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Ярким примером проявления чисел Фибоначчи в живой природе является филлотаксис Французский математик Бине показал, как связаны числа Фибоначчи и основание золотой пропорции:

http://www.abc-people.com/idea/zolotsech/r9.gif

Эта формула интересна тем, что справа находятся иррациональные числа α и http://www.abc-people.com/idea/zolotsech/r9a.gif, а слева всегда целое. Нужно отметить асимметричность знаменателя правой части формулы 5. Из последней формулы легко получить следующее соотношение :

http://www.abc-people.com/idea/zolotsech/r10.gif

которое вместе с формулами показывает глубокую связь между числами Фибоначчи и основанием золотой пропорции. В этих можно заметить почти «мистическое» присутствие числа 5.

Если в рекурсивной последовательности, образуемой по формуле 4, задать произвольные начальные члены, то предел отношения двух соседних членов этого ряда все равно будет стремиться к α (формула 6). Даже некоторое количество арифметических ошибок в вычислении φi при 1<i<<n, не повлияют на этот результат.

Основание золотой пропорции является инвариантом рекурсивных соотношений 4 и 6. В этом проявляется «устойчивость» золотого сечения, одного из принципов организации живой материи.

Так же, основание золотой пропорции является решением двух экзотических рекурсивных последовательностей (рис 4.)

http://www.abc-people.com/idea/zolotsech/r11.gif

http://www.abc-people.com/idea/zolotsech/r11a.gif

Рис. 4 Рекурсивных последовательности

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказал, что оптимальной является такая система гирь: 1, 2, 4, 8, 16 . Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и «двоичный» ряд гирь 1, 2, 4, 8, 16 . на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2 ., во втором – это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Присутствие золотой пропорции и чисел Фибоначчи в живой природе позволяют говорить о некотором едином механизме их возникновения. Числа Фибоначчи и золотое сечение являются математическим описанием некоторого формообразующего процесса. На микроуровне (целочисленном) количественная характеристика этого процесса проявляется как числа Фибоначчи, а на макроуровне (статистическом) как основание золотой пропорции - число α. Если такой формообразующий процесс является законом живой природы, то с его помощью можно объяснить наличие золотой пропорции в соотношении частей тела человека и животных, а также явление филлотаксиса.


Плевра
Серозная оболочка легкого называется плеврой (pleura). Покрывая легкое со всех сторон, она по корню легкого переходит на стенки грудной полости, образуя вокруг легкого замкнутый плевральный мешок. Соответственно легким различают правый и левый плевральные мешки, Листок плевры, выстилающий стенки грудной полости и сращенный с ними, носит ...

Материалы и оборудование
Культуры микроорганизмов, пробирки, колбы, чашки Петри, бактериологические иглы, шпатели, штативы, предметные и покровные стекла, красители, спиртовая горелка. При любой микробиологической работе: при посевах, при посевах, выделении, пересевах, сохранении чистых культур используются стерильные среды, стерильная посуда, стерильные инстр ...

Понятие иммунитета. Неспецифические факторы защиты
Иммунитет –способность поддерживать генеостаз (постоянство внутренней среды). Все средства защиты разделяются на специфические и неспецифические. Специфические - появляется иммунитет через 48 часов после контакта с патогенном (латентный период) и действует против строго определённого патогенна – адентивный иммунный ответ. Неспецифически ...