Золотое Сечение
Страница 1

Золотое сечение (золотая пропорция) — пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а.

НиТ_ Текущие публикации_ Золотое сечение.files\izzs_p01.gif

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

НиТ_ Текущие публикации_ Золотое сечение.files\izzs_p02.gif

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618 ., если АВ принять за единицу, ВЕ = 0,382 . Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением:

Одно из решений которого равно:

Второе решение называется основанием золотой пропорции и обозначается: φ

\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.61803398874989484\dots

Число φ обладает уникальными математическими свойствами. Это единственное число, кроме нуля, удовлетворяющее рекуррентному соотношению:

http://www.abc-people.com/idea/zolotsech/r3.gif

В геометрии существуют различные способы построения золотой пропорции, причем характерно, что для построения достаточно взять самые простые геометрические фигуры – квадрат или прямоугольный треугольник с соотношением катетов 1:2. Если с середины стороны квадрата провести окружность радиусом, равным диагонали полуквадрата, то на ее пересечении с продолженной стороной квадрата получим отрезок, который меньше стороны квадрата в соответствии с золотой пропорцией. Еще проще построение золотой пропорции в прямоугольном треугольнике 1:2: . Достаточно провести две дуги окружности, пересекающиеся в одной точке на гипотенузе, и большой катет будет разделен в соответствии с золотой пропорцией.

Золотое сечение можно увидеть и в пентаграмме - так называли греки звездчатый многоугольник. Он служит символом Пифагорейского союза – религиозной секты и научной школы по главе с Пифагором, которая проповедовала братскую любовь к друг другу, отречение от внешнего мира, общность имущества и т.д. На подобных устоях основывались очень многие секты. Но Пифагорийский союз отличало от других то, что пифагорейцы считали возможным добиться очищения духа при помощи математики. По их теории, в основу мирового порядка положены числа. Мир, считали они, состоит из противоположностей, а гармония приводит противоположности к единству. Гармония же заключается в числовых отношениях. Пифагорейцы приписывали числам различные свойства. Так, четные числа они называли женскими, нечетные (кроме 1) – мужскими. Число 5 – как сумма первого женского числа (2) и первого мужского (3) – считалось символом любви. Отсюда такое внимание к пентаграмме, имеющей 5 углов.

Страницы: 1 2


Количественное определение
Количественное определение вирусов проводят двумя путями — изучением инфекционности и количественным определением вирусных Аг. Определение титра инфекционности вирусов в значительной степени зависит от метода количественного исследования; у бактериофагов отно­шение инфекционность-частица составляет приблизительно 1 (то есть каждая вирус ...

Глистные инвазии. Пути заражения человека гельминтами. Виды гельминтов. Меры профилактики
Гельминтоз - поражение организма человека гельминтами (глистами). В медицинской литературе гельминтоз называют также глистной инвазией. Медицине известно более 150 видов гельминтов, зарегистрированных у человека. Из них около 70 видов были обнаружены на территории России, среди которых широко распространены около 30 видов. В зависимос ...

Методы идентификации нуклеиновых кислот
Методы выявления РНК и ДНК возбудителей нашли применение в основном при диагностике вирусных инфекций. Тем не менее разработаны тест-системы для идентификации некоторых прихотливых бактерий (например, легионелл, хламидий), а также для идентификации колоний Neisseha gonorrhoeae, Haemophilus influenzae типа b, стрептококков группы В, энте ...