Материалы » Естествознание на молекулярном уровне » Неорганическая и органическая химия. Неорганическая химия

Неорганическая и органическая химия. Неорганическая химия
Страница 1

НЕОРГАНИЧЕСКАЯ ХИМИЯ (неорганическая химия),

наука о хим. элементах и образуемых ими простых и сложных веществах, за исключением органических соединений.

Понятие "неорганическая химия

" (минер. химия) появилось первоначально для обозначения веществ (веществ) минерального происхождения.

Основные задачи современной неорганической химии: изучение строения, свойств и химических реакций простых веществ и соединений, взаимосвязи строения со свойствами и реакционной способностью веществ, разработка методов синтеза и глубокой очистки веществ, общих методов получения неорганических материалов.

По изучаемым объектам неорганическую химию подразделяют на химию отдельных элементов, химию групп элементов в составе периодичной системы (химия щелочных металлов, щелочноземельных элементов, галогенов, халькогенов и др.), химию определенных соединений тех или иных элементов (химия силикатов, пероксидных соединений и др.), химию элементов, объединенных в группы по исторически сложившимся признакам (напр., химия редких элементов), химию близких по свойствам и применению веществ (химия тугоплавких веществ, интерметаллидов, полупроводников, энергонасыщенных соединений, благородных металлов, неорганических полимеров и др.). Нередко обособляют химию переходных элементов.

Как и многие др. хим. науки, неорганическая химиянеразрывно связана с физ. химией, которая может считаться теоретической и методологической основой современной химии, с аналитической химией – одним из главных инструментов химии.

Неорганическая химия отчасти пересекается с орг. химией, особенно с химией металлоорганических соединении, бионеорганической химией и др.

Теоретические представления неорганической химии используют в геохимии, космохимии, химии твердого тела, химии высоких энергий, радиохимии, ядерной химии, в некоторых разделах биохимии и агрохимии.

Прикладная часть неорг. химии связана с хим. технологией, металлургией, галургией, электроникой, с добычей полезных ископаемых, производством керамики, строительных, конструкционных и др. неорг. материалов, с обеспечением работы энергетических установок (например, АЭС), с сельским хозяйством, с обезвреживанием промышленных отходов, охраной природы и др.

История неорганической химии тесно связана с общей историей химии, а вместе с ней – с историей естествознания и историей человеческой цивилизации.

Этапными для развития неорганической химии явились работы И. Берцелиуса, который в 1814 опубликовал таблицу атомных масс. А. Авогадро и Ж. Гей-Люссак открыли газовые законы, П. Дюлонг и А. Пти нашли правило, связывающее теплоемкость с числом атомов в соединении, Г.И. Гесс – закон постоянства количества теплоты. Возникла атомно-молекулярная теория.

В 1807 Г. Дэви электрохимически разложил гидроксиды натрия и калия и ввел в практику новый метод выделения простых веществ; в 1834 М. Фарадей опубликовал основные законы электрохимии.

2-я половина – конец XIX в. ознаменовались обособлением физ. химии. К. Гульдберг и П. Вааге сформулировали закон действующих масс. Работы С. Аррениуса, Я. Вант-Гоффа, В. Оствальда положили начало теории растворов.

В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными новые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутений, ниобий), с помощью введенного в практику спектрального анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс многих химических элементов.

К кон. 1860-х гг. стало известно 63 хим. элемента и большое число разнообразных хим. соединений, однако научная классификация элементов отсутствовала. Основой для систематики явился периодический закон Менделеева, с помощью которого были исправлены атомные массы многих элементов и предсказаны свойства неизвестных в то время веществ. Последние открытия Галлия (П.Э. Лекок де Буабодран, 1875), Скандия (Л. Нильсон, 1879), Германия (К.А. Винклер, 1886), Лантаноидов, благородных газов (У. Рамзай, 1894-98), первых радиоактивных элементов – полония и радия (М. Склодовская, П. Кюри, 1898) блестяще подтвердили периодический закон. При получении астата, актиноидов, курчатовия, нильсбория и элементов с атомными номерами 106 и выше этот закон был использован на практике. Приоритет Менделеева в открытии периодического закона, некоторое время оспаривавшийся Л. Мейером, был закреплен в названии одного из искусственных элементов (менделевия).

Страницы: 1 2


Гликолиз. Механизмы регуляции цикла. Энергетическая эффективность процесса, значение. Связь с другими процессами
Гликолиз — процесс анаэробного распада глюкозы, идущий Гликолиз с освобождением энергии, конечным продуктом которого является пировиноградная кислота. Гликолиз — общий начальный этап аэробного дыхания и всех видов брожения. Реакции гликолиза протекают в растворимой части цитоплазмы (цитозоле) и в хлоропластах. В цитозоле гликолитически ...

Онтогенез растительной клетки
С момента образования и до отмирания клетки проходят определенный путь развития, в котором выделяют три основные фазы: эмбриональную, растяжения и дифференциации. Эмбриональная фаза развития – процесс новообразования клеток путем их деления. Образовавшиеся в результате деления клетки мелкие, расположены плотно, оболочка тонкая, богатая ...

Синтез сложного рецептивного поля
Таким же образом, как рецептивное поле простой клетки может быть построено как конвергенция афферентов из ЛКТ, также и рецептивное поле сложной клетки может быть составлено из комбинации полей простых клеток. Гипотетическая сложная клетка, которая возбуждается стимулом в виде вертикальной границы, расположенной в любом месте в пределах ...