Макромир
Страница 3

Дж.К.Максвелла

окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоиспытатель

X.К.Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. Осмысливая свои эксперименты, он ввел понятие «силовые линии». Фарадей с классической ясностью представлял себе действие электрических сил от точки к точке в их «силовом поле». На основе своего представления о силовых линиях он предположил, что существует глубокое родство электричества и света, и хотел построить и экспериментально обосновать новую оптику, в которой свет рассматривался бы как колебания силового поля. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований

Далее уже Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии»[1]. Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений и явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему дифференциальных уравнений, описывающих электромагнитное поле.

Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не «привязанного» к электрическим зарядам. В дифференциальных уравнениях Максвелла вихри электрического и магнитного полей определяются производными по времени не от своих, а от чужих полей: электрическое — от магнитного и, наоборот, магнитное — от электрического. Поэтому если меняется со временем магнитное поле, то существует и переменное электрическое поле, которое в свою очередь ведет к изменению магнитного поля. В результате происходит постоянное изменение векторов напряженности электрического и магнитного полей, т.е. возникает переменное электромагнитное поле, которое уже не привязано к заряду, а отрывается от него, самостоятельно существуя и распространяясь в пространстве. Вычисленная им скорость распространения электромагнитного поля оказалась равна скорости света. Исходя из этого Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу

XIX века физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

- Вещество и поле различаются как корпускулярные и волновые сущности: вещество дискретно и состоит из атомов, а поле непрерывно.

- Вещество и поле различаются по своим физическим характеристикам: частицы вещества обладают массой покоя, а поле — нет.

Страницы: 1 2 3 4


Поляризационная микроскопия
Поляризационная микроскопия позволяет получать изображения неокрашенных ани­зотропных структур (например, коллагеновых волокон, миофибрилл или клеток микроорганиз­мов). Принцип метода основан на изучении объекта в свете, образованном двумя лучами, поля­ризованными во взаимно перпендикулярных плоскостях. ...

Генная инженерия
Генная инженерия возникает в70-е гг. как новая отрасль молекулярной биологии, главная задача которой – активная и целенаправленная перестройка генрв живых существ, их конструирование, то есть управление наследственостью. Генная инженерия – раздел молекулярной генетики, связанный с целеноправленным созданием in vitro новых комбинаций г ...

Многообразие и единство элементарных частиц. Проблема их классификации.
Сейчас известно примерно 400 элементарных частиц. Не­которые из них «живут» очень короткое время, быстро превращаясь в другие частицы, успевая за время своего существова­ния пролетать расстояния, равные радиусу атомного ядра (10ˉ12— 10ˉ13 см). Минимальное время, доступное экспериментально­му измерению, характеризуется величино ...