Строение ядра
Страница 2

В интерфазе хроматин переходит в более диспергированное состояние. Часть его остается плотно спирализованной и по-прежнему хорошо окрашивается. Эта часть называется гетерохроматином. Гетерохроматин имеет вид темных пятен, расположенных обычно ближе к покровам ядра. Остальной, более рыхло спирализованный хроматин, локализуется ближе к центру ядра. Это эухроматин.

Во время деления ядра хроматин конденсируется и образует более туго спирализованные нити или палочковидные тельца – хромосомы, названные так Вальдейером в 1888 году. Количество их для клеток каждого вида постоянно. В любой клетке гороха, например, находятся 14 хромосом – по семь от каждого родителя. В подсолнечнике – 34. Это приведены хромосомные числа в соматических клетках – диплоидный набор 2n. Половые клетки, или гаметы, содержат только половину количества хромосом, характерную для соматических клеток организма. Количество хромосом в гаметах называют гаплоидным набором хромосом. Гаплоидные половые клетки находятся в зрелых пыльцевых зернах и в зародышевом мешке семязачатка.

Клетки, имеющие более двух наборов хромосом, – полиплоидные. Приставки три-, тетра- и так далее показывают, во сколько раз увеличено количество хромосом, то есть: степень плоидности: 3n – триплоид, 4n – тетраплоид, 5n –пентаплоид и так далее. У растений полиплоидия встречается гораздо чаще, чем у животных. Большинство растений способно к вегетативному размножению и поэтому эффективно воспроизводятся в полиплоидном состоянии. Растения-полиплоиды чаще характеризуются крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам окружающей среды и другими хозяйственно полезными качествами. Они представляют собой важный источник изменчивости и могут быть использованы как исходный материал для селекции и создания высокоурожайных сортов растений. Среди наиболее важных сельскохозяйственных культур полиплоиды – пшеница, хлопчатник, сахарный тростник, банан, картофель, подсолнечник. Красивые садовые цветы (хризантемы, георгины) – также полиплоидные.

Искусственно полиплоидные растения получают при помощи колхицина – алкалоид, который угнетает образование митотического веретена в результате нарушения образований микротрубочек. Встречаются полиплоиды и в природных популяциях.

Одна из первых попыток построения схемы строения хромосом принадлежит Кольцову (1934).

Хромосома состоит из двух хроматид, основой которых является молекула ДНК. Неконденсированный участок ДНК формирует первичную перетяжку, скрепляющую хроматиды – центромеру. На ней расположены дисковидные тельца, на которых фиксируются нити веретена деления. У некоторых хромосом есть вторичная перетяжка, которая не имеет белковых телец. Она отделяет от остальной части хромосомы спутник. Вокруг вторичной перетяжки в ядре формируется ядрышко.

Ядрышко – сферическая структура внутри ядра. Шлейден в 1842 г. впервые указал на существование ядрышек. Граница между ядрышком и нуклеоплазмой не выражена, потому что ядрышко не окружено мембраной и находится в непосредственном контакте с другими компонентами ядра. Ядрышко имеет плотную структуру, состоящую из элементов двух типов – гранулярных и фибриллярных.

Некоторые из гранул содержат РНК, их можно сравнить по размерам с цитоплазматическими рибосомами. Мелкие гранулы представляют собой белок. Фибриллярный компонент содержит ДНК.

В центральной части ядрышка начинается скручивание рибосомной РНК и идет сборка рибосом, которая завершается в цитоплазме. Таким образом, в ядрышках синтезируются рибосомальные РНК. Деление и образование новых эукариотических клеток связано с делением ядра. Новые ядра всегда возникают в результате деления уже имеющихся.

Страницы: 1 2 


Введение новой генетической информации в клетки бактерий
Бактерии могут приобретать новый генетический материал несколькими способами. Это: 1) трансформация, при которой в клетки проникают молекулы ДНК, добавленные в культуральную среду; 2) конъюгация, в процессе которой ДНК непосредственно переносится от одной клетки к другой; 3) опосредуемая бактериофагами трансдукция, при которой новая г ...

Изменчивость фагов и изменчивость микроорганизмов под влиянием фагов
Фаги, как и микроорганизмы, способны изменять все свои свойства: форму и размеры негативных колоний, спектр литического действия, способность к адсорбции на микробной клетке, устойчивость к внешним воздействиям, антигенные свойства. Особенно часто наблюдаются изменения морфологии негативных колоний, спектра литического действия и превра ...

Биологические ритмы их показатели, и классификация
Биологические ритмы (биоритмы) — регулярное, периодическое повторение во времени характера и интенсивности жизненных процессов, отдельных состояний или событий. Б. р. в той или иной форме присущи всем живым организмам. Б. р. описываются рядом характеристик: периодом, амплитудой, фазой, средним уровнем, профилем. В зависимости от порож ...