На какие положения опиралась математическая исследовательская программа античности?
Первые научные программы сформировались в Древней Греции с VI по III в. до н. э. и надолго определили развитие науки. К ним относятся математическая, континуальная и атомистическая научные программы. Каждая программа формировалась в несколько этапов.
Математическая программа, выросшая из философии Пифагора и Платона, начала развиваться уже в античные времена. В основе программы лежит представление о Космосе как упорядоченном выражении начальных сущностей, которые могут быть разными. Для Пифагора это были числа. https://alcolawyer.ru лицензия на хранение. Лицензия на хранение алкоголя.
Арифметика трактовалась как центральное ядро всего Космоса в раннем пифагореизме, а геометрические задачи — как задачи арифметики целых, рациональных чисел, геометрические величины — как соизмеримые. Как заметил Ван-дер-Варден, «логическая строгость не позволяла им допускать даже дробей, и они заменяли их отношением целых чисел». Постепенно эти представления привели к возвышению математики как науки высшего ранга. Картина мира гармонична: протяженные тела подчинены геометрии, небесные тела — арифметике, построение человеческого тела — канону Поликлета.
Переход от наглядного знания к абстрактным принципам, вводимым мышлением, связывают с Пифагором. Софисты и элеаты, разработавшие системы доказательств, стали задумываться над проблемами отражения мира в сознании, так как ум человека влияет на его представление о мире. Платон отделил мир вещей от мира идей — мир вещей способен только подражать миру идей, построенному иерархически упорядоченно. Он утверждал: «Необходимо класть в основу всего число». Мир идей созидается на основе математических закономерностей по божественному плану, и по этому пути математического знания об идеальном мире пойдет наука. Открытие несоизмеримости стороны квадрата и его диагонали, иррациональности чисел нанесло серьезный удар не только античной математике, но и космологии, теории музыки и учению о симметрии живого тела. Математики стали задумываться над основаниями своей теории. Ее основой выбрали геометрию, сумевшую представить отношения, невыразимые с помощью арифметических чисел и отношений. Геометрия Платона — «наука о том, как выразить на плоскости числа, по природе своей неподобные. Кто умеет соображать, тому ясно, что речь идет здесь о божественном, а не о человеческом чуде».
Евдокс сформулировал теорию пропорций и ее приложения к геометрии. Он пришел к изучению сложных форм несоизмеримости с помощью беспредельного уменьшения остатков. Геометрия Евклида определила во многом структуру всей науки. Исходные понятия — точка, прямая, плоскость, на них построены «идеальные объекты второго уровня» — геометрические фигуры. При этом исходные понятия задаются системой аксиом. Галилей и Ньютон создавали классическую физику по образцу «Начал» Евклида. Они сохранили системность и иерархичность. Частицы и силы — «первичные идеальные объекты», заданные в рамках определенного раздела науки.
С XVII в. Утвердился взгляд на научность (достоверность, истинность) знания как на степень его математизации. «Книга природы написана на языке математики», — считал Галилей. Математический анализ, развитие статистических методов анализа, связанных с познанием вероятностного характера протекания природных процессов, способствовали проникновению методов математики в другие естественные науки.
И. Кант писал: «В любом частном учении о природе можно найти науки в собственном смысле лишь столько, сколько в ней имеется математики».
Мочевой пузырь
Мочевой пузырь (vesica urinaria) представляет собой вместилище для мочи, которая периодически выводится из него через мочеиспускательный канал. Емкость мочевого пузыря около 500 мл. Пустой мочевой пузырь лежит в полости малого таза позади лобкового симфиза, от которого он отделен слоем рыхлой клетчатки. При наполнении мочой верхняя его ...
Связывание на фильтрах
Является стандартно используемой методикой для определения РНК-белковых взаимодействий и оценки константы связывания. Принцип данного метода основан на способности нитроцеллюлозных фильтров удерживать белки, а также связанные РНК, пока несвязанные РНК проходят через фильтр. Несмотря на свою концептуальную простоту, метод всё же не являе ...
Каталитические системы дыхания
Окисление дыхательных субстратов в ходе дыхания осуществляется с участием ферментов. Ферменты как белковые катализаторы, помимо свойств, присущих неорганическим катализаторам, обладают рядом особенностей: высокой активностью, высокой специфичностью по отношению к субстратам и высокой лабильностью. Их пространственная организации зависящ ...
