Материалы » Интересные концепции современного естествознания » На какие положения опиралась математическая исследовательская программа античности?

На какие положения опиралась математическая исследовательская программа античности?

Первые научные программы сформировались в Древней Греции с VI по III в. до н. э. и надолго определили развитие науки. К ним относятся математическая, континуальная и атомистическая научные программы. Каждая программа формировалась в несколько этапов.

Математическая программа, выросшая из философии Пифагора и Платона, начала развиваться уже в античные времена. В основе программы лежит представление о Космосе как упорядоченном выражении начальных сущностей, которые могут быть разными. Для Пифагора это были числа.

Арифметика трактовалась как центральное ядро всего Космоса в раннем пифагореизме, а геометрические задачи — как задачи арифметики целых, рациональных чисел, геометрические величины — как соизмеримые. Как заметил Ван-дер-Варден, «логическая строгость не позволяла им допускать даже дробей, и они заменяли их отношением целых чисел». Постепенно эти представления привели к возвышению математики как науки высшего ранга. Картина мира гармонична: протяженные тела подчинены геометрии, небесные тела — арифметике, построение человеческого тела — канону Поликлета.

Переход от наглядного знания к абстрактным принципам, вводимым мышлением, связывают с Пифагором. Софисты и элеаты, разработавшие системы доказательств, стали задумываться над проблемами отражения мира в сознании, так как ум человека влияет на его представление о мире. Платон отделил мир вещей от мира идей — мир вещей способен только подражать миру идей, построенному иерархически упорядоченно. Он утверждал: «Необходимо класть в основу всего число». Мир идей созидается на основе математических закономерностей по божественному плану, и по этому пути математического знания об идеальном мире пойдет наука. Открытие несоизмеримости стороны квадрата и его диагонали, иррациональности чисел нанесло серьезный удар не только античной математике, но и космологии, теории музыки и учению о симметрии живого тела. Математики стали задумываться над основаниями своей теории. Ее основой выбрали геометрию, сумевшую представить отношения, невыразимые с помощью арифметических чисел и отношений. Геометрия Платона — «наука о том, как выразить на плоскости числа, по природе своей неподобные. Кто умеет соображать, тому ясно, что речь идет здесь о божественном, а не о человеческом чуде».

Евдокс сформулировал теорию пропорций и ее приложения к геометрии. Он пришел к изучению сложных форм несоизмеримости с помощью беспредельного уменьшения остатков. Геометрия Евклида определила во многом структуру всей науки. Исходные понятия — точка, прямая, плоскость, на них построены «идеальные объекты второго уровня» — геометрические фигуры. При этом исходные понятия задаются системой аксиом. Галилей и Ньютон создавали классическую физику по образцу «Начал» Евклида. Они сохранили системность и иерархичность. Частицы и силы — «первичные идеальные объекты», заданные в рамках определенного раздела науки.

С XVII в. Утвердился взгляд на научность (достоверность, истинность) знания как на степень его математизации. «Книга природы написана на языке математики», — считал Галилей. Математический анализ, развитие статистических методов анализа, связанных с познанием вероятностного характера протекания природных процессов, способствовали проникновению методов математики в другие естественные науки.

И. Кант писал: «В любом частном учении о природе можно найти науки в собственном смысле лишь столько, сколько в ней имеется математики».


Характеристика биотопов Средней Оби по микроводорослям в 2008г
Как известно, на видовое разнообразие фитопланктона и его количественное развитие влияют многие факторы среды обитания, такие как: рН воды, ее температура, наличие в воде растворенных веществ, содержание кислорода и т.д. Материалом для выяснения влияния условий местообитания на развитие водорослей послужили 5 проб, собранных 27.07.08г ...

Антигенсвязывающие центры антител
Согласно рентгеноструктурным исследованиям комплексов Fab-фрагментов с антигенами связывание антигена происходит в доступной растворителю щели активного центра, образованной вариабельными доменами в N-концевой части легкой и тяжелой цепей. Длина щели антител варьирует от 0,4 до 3,4 нм, а средние размеры области связывания для полимерных ...

Морфология вирусов
Изучение морфологии вирусов возможно лишь при помощи электронной микроскопии, одна­ко чаще всего этот метод недоступен из-за отсутствия столь дорогого и сложного прибора. Более того, многие возбудители морфологически сходны, что снижает ценность этого метода. Наиболее распространён метод микроскопии содержимого везикул и тканевых экстра ...