Материалы » Интересные концепции современного естествознания » На какие положения опиралась математическая исследовательская программа античности?

На какие положения опиралась математическая исследовательская программа античности?

Первые научные программы сформировались в Древней Греции с VI по III в. до н. э. и надолго определили развитие науки. К ним относятся математическая, континуальная и атомистическая научные программы. Каждая программа формировалась в несколько этапов.

Математическая программа, выросшая из философии Пифагора и Платона, начала развиваться уже в античные времена. В основе программы лежит представление о Космосе как упорядоченном выражении начальных сущностей, которые могут быть разными. Для Пифагора это были числа. https://alcolawyer.ru лицензия на хранение. Лицензия на хранение алкоголя.

Арифметика трактовалась как центральное ядро всего Космоса в раннем пифагореизме, а геометрические задачи — как задачи арифметики целых, рациональных чисел, геометрические величины — как соизмеримые. Как заметил Ван-дер-Варден, «логическая строгость не позволяла им допускать даже дробей, и они заменяли их отношением целых чисел». Постепенно эти представления привели к возвышению математики как науки высшего ранга. Картина мира гармонична: протяженные тела подчинены геометрии, небесные тела — арифметике, построение человеческого тела — канону Поликлета.

Переход от наглядного знания к абстрактным принципам, вводимым мышлением, связывают с Пифагором. Софисты и элеаты, разработавшие системы доказательств, стали задумываться над проблемами отражения мира в сознании, так как ум человека влияет на его представление о мире. Платон отделил мир вещей от мира идей — мир вещей способен только подражать миру идей, построенному иерархически упорядоченно. Он утверждал: «Необходимо класть в основу всего число». Мир идей созидается на основе математических закономерностей по божественному плану, и по этому пути математического знания об идеальном мире пойдет наука. Открытие несоизмеримости стороны квадрата и его диагонали, иррациональности чисел нанесло серьезный удар не только античной математике, но и космологии, теории музыки и учению о симметрии живого тела. Математики стали задумываться над основаниями своей теории. Ее основой выбрали геометрию, сумевшую представить отношения, невыразимые с помощью арифметических чисел и отношений. Геометрия Платона — «наука о том, как выразить на плоскости числа, по природе своей неподобные. Кто умеет соображать, тому ясно, что речь идет здесь о божественном, а не о человеческом чуде».

Евдокс сформулировал теорию пропорций и ее приложения к геометрии. Он пришел к изучению сложных форм несоизмеримости с помощью беспредельного уменьшения остатков. Геометрия Евклида определила во многом структуру всей науки. Исходные понятия — точка, прямая, плоскость, на них построены «идеальные объекты второго уровня» — геометрические фигуры. При этом исходные понятия задаются системой аксиом. Галилей и Ньютон создавали классическую физику по образцу «Начал» Евклида. Они сохранили системность и иерархичность. Частицы и силы — «первичные идеальные объекты», заданные в рамках определенного раздела науки.

С XVII в. Утвердился взгляд на научность (достоверность, истинность) знания как на степень его математизации. «Книга природы написана на языке математики», — считал Галилей. Математический анализ, развитие статистических методов анализа, связанных с познанием вероятностного характера протекания природных процессов, способствовали проникновению методов математики в другие естественные науки.

И. Кант писал: «В любом частном учении о природе можно найти науки в собственном смысле лишь столько, сколько в ней имеется математики».


Спорогенез и гаметогенез у растений
Способность к размножению, или самовоспроизведению, является одним из обязательных и важнейших свойств живых организмов. Размножение поддерживает длительное существование вида, обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Оно приводит к увеличению численности особей вида и способствует его рассе ...

Из чего состоит вкус
Разные вещества могут обладать чистым или смешанным вкусом. Вкус всех чисто горьких веществ воспринимается человеком совершенно одинаково. Так, растворы опия, стрихнина, морфия, хинина могут отличаться один от другого интенсивностью вызванного ими чувства горечи, но не его качеством. Если же уравнять интенсивность ощущения, взяв перечис ...

Характеристика семейств: розоцветные и яснотковые
Розоцветные Rosaceae Яснотковые Lamiaceae Состав Жирное масло, цианогенные гликозиды, Тритерпеновые сапонины, танниды, терпеноиды, полисахариды, редко алколоиды, кумарины. Эфирные масла, ди - и тритерпеноиды, сапонины, полифенолы и танниды, иридоиды, хиноны, кумарины, гормоны линьки насекомых, редко алколоиды. ...