Материалы » Интересные концепции современного естествознания » На какие положения опиралась математическая исследовательская программа античности?

На какие положения опиралась математическая исследовательская программа античности?

Первые научные программы сформировались в Древней Греции с VI по III в. до н. э. и надолго определили развитие науки. К ним относятся математическая, континуальная и атомистическая научные программы. Каждая программа формировалась в несколько этапов.

Математическая программа, выросшая из философии Пифагора и Платона, начала развиваться уже в античные времена. В основе программы лежит представление о Космосе как упорядоченном выражении начальных сущностей, которые могут быть разными. Для Пифагора это были числа. https://alcolawyer.ru лицензия на хранение. Лицензия на хранение алкоголя.

Арифметика трактовалась как центральное ядро всего Космоса в раннем пифагореизме, а геометрические задачи — как задачи арифметики целых, рациональных чисел, геометрические величины — как соизмеримые. Как заметил Ван-дер-Варден, «логическая строгость не позволяла им допускать даже дробей, и они заменяли их отношением целых чисел». Постепенно эти представления привели к возвышению математики как науки высшего ранга. Картина мира гармонична: протяженные тела подчинены геометрии, небесные тела — арифметике, построение человеческого тела — канону Поликлета.

Переход от наглядного знания к абстрактным принципам, вводимым мышлением, связывают с Пифагором. Софисты и элеаты, разработавшие системы доказательств, стали задумываться над проблемами отражения мира в сознании, так как ум человека влияет на его представление о мире. Платон отделил мир вещей от мира идей — мир вещей способен только подражать миру идей, построенному иерархически упорядоченно. Он утверждал: «Необходимо класть в основу всего число». Мир идей созидается на основе математических закономерностей по божественному плану, и по этому пути математического знания об идеальном мире пойдет наука. Открытие несоизмеримости стороны квадрата и его диагонали, иррациональности чисел нанесло серьезный удар не только античной математике, но и космологии, теории музыки и учению о симметрии живого тела. Математики стали задумываться над основаниями своей теории. Ее основой выбрали геометрию, сумевшую представить отношения, невыразимые с помощью арифметических чисел и отношений. Геометрия Платона — «наука о том, как выразить на плоскости числа, по природе своей неподобные. Кто умеет соображать, тому ясно, что речь идет здесь о божественном, а не о человеческом чуде».

Евдокс сформулировал теорию пропорций и ее приложения к геометрии. Он пришел к изучению сложных форм несоизмеримости с помощью беспредельного уменьшения остатков. Геометрия Евклида определила во многом структуру всей науки. Исходные понятия — точка, прямая, плоскость, на них построены «идеальные объекты второго уровня» — геометрические фигуры. При этом исходные понятия задаются системой аксиом. Галилей и Ньютон создавали классическую физику по образцу «Начал» Евклида. Они сохранили системность и иерархичность. Частицы и силы — «первичные идеальные объекты», заданные в рамках определенного раздела науки.

С XVII в. Утвердился взгляд на научность (достоверность, истинность) знания как на степень его математизации. «Книга природы написана на языке математики», — считал Галилей. Математический анализ, развитие статистических методов анализа, связанных с познанием вероятностного характера протекания природных процессов, способствовали проникновению методов математики в другие естественные науки.

И. Кант писал: «В любом частном учении о природе можно найти науки в собственном смысле лишь столько, сколько в ней имеется математики».


Методы исследования. Метод определения активности карбоксипептидазы Н
Активность КП Н определяли модифицированным методом Fricker L.D. и Snyder S.H. [148]. Для определения активности фермента к 150 мкл (в случае опытной пробы) или 140 мкл (в случае контрольной пробы) 50 мМ натрий-ацетатного буфера, содержащего 50 мМ NaCl (рН 5,6), добавляли 50 мкл гомогената ткани. В контрольные пробы, кроме того, добавл ...

Результаты исследований. Внешние промеры маньчжурского зайца
Как показали измерения, длина тела маньчжурского зайца колеблется в пределах: у самцов от 48,0 см до 51,0 см, у самок от 44,0 до 48,5 см. Средний показатель длины тела равен 49,833 см у самцов и 46,66 см у самок. Следовательно, средняя длина тела самцов на 3,173 см больше чем у самок.Косая длина тела маньчжурского зайца колеблется в пре ...

Концепция самоорганизации объекта
Как и все остальные системы, заколка имеет свойство получать и выбрасывать потоки. Такое положение именуется как открытость систем. На примере можно показать, что ряд потоков входящих в систему, при дальнейшем синтезировании, выбрасываются из неё, воздействуя на другие типы систем. Подобное явление имеет ряд положительных и отрицатель ...