Азотфиксация
Азот относится к четырем элементам составляющим основу живого вещества. Однако подавляющая масса азота в биосфере представлена химически инертным молекулярным азотом атмосферы. Перевод его в форму, доступную для живых организмов, возможен тремя основными путями.
1. Образование окислов азота под воздействием электрических разрядов в атмосфере – трудно поддается количественному учету, но вряд ли играет существенную роль в современных условиях.
2. Образование аммиака и окислов азота в химических реакциях в результате техногенных процессов, осуществляемых человеком и лежащих в основе производства азотных удобрений. По разным оценкам достигается связывание около 4 • 107т азота в год.
3. Фиксация азота клетками бактерий, которая, как ни удивительно, примерно на порядок превышает результаты, достигнутые человеком в самых совершенных химических производствах – 2 • 108 т азота в год. Таким образом, совместная деятельность микроорганизмов приводит к связыванию ежегодно до 300 кг азота на гектар почвы.
Азотфиксация бактериями открыта С.Н. Виноградским в 1883 г. на примере выделенных из почвы бактерий, названных им в честь Л. Пастера Clostridium pasteurianum.
Фиксировать азот, т.е. превращать молекулярный азот в аммонийный, способны только прокариоты, и среди них это свойство распространено довольно широко. Процесс чрезвычайно энергоемок: для восстановления 1 молекулы N2 необходимо затратить 12 молекул АТР, иначе говоря, для ассимиляции 1 мг азота Clostridium перерабатывает 500 мг глюкозы.
Аэотфиксация осуществляется с помощью фермента нитрогеназы, которая состоит из двух компонентов: малого и большого. Некоторые нитрогеназы вместо или наряду с молибденом содержат ванадий.
Для функционирования нитрогеназы необходимы АТР, ионы Mg2+ и и восстановитель с низким окислительно-восстановительным потенциалом.
Для восстановления молекулы азота необходим перенос шести электронов, но за один цикл не может быть перенесено более двух электронов, поэтому процесс протекает не менее чем в трех последовательных стадиях:
При быстрой остановке реакции из инкубационной смеси удалось выделить гидразин. По-видимому, промежуточные продукты остаются прочно связанными с нитрогеназой, которая способна восстанавливать и ряд других соединений:
Способность нитрогеназы восстанавливать ацетилен в этилен позволила разработать простой метод определения нитрогеназ-ной активности, весьма чувствительной к кислороду, за счет чего азотфиксация происходит либо у облигатно и факультативно анаэробных бактерий, либо в анаэробных участках клетки аэробных бактерий. У Rhizobium азотфиксация происходит в клубеньках, образующихся на корнях бобовых растений после «заражения» растений этими бактериями. При этом клетки бактерий сильно видоизменяются, превращаясь в так называемые бактероиды, а растения начинают синтезировать особый гемоглобин, которому приписывается способность защищать нитрогеназу от избытка кислорода. Известен также симбиоз покрытосеменных растений с азотфиксирую-щими актиномицетами, а голосеменных и папоротников – с цианобактериями. Урожайность злаковых заметно повышается в ассоциации с бактериями-азотфиксаторами рода Azospirillum. Азот-фиксирующие штаммы Klebsiella обнаружены в кишечнике жителей Новой Гвинеи.
Ферменты сыворотки крови
В основе многих патологических и предпатологических состояний организма лежат нарушения функционирования ферментных систем. Многие ферменты локализуются внутри клеток, а поэтому в сыворотке (плазме) крови их активность низка или вообще отсутствует. Именно поэтому анализируя внеклеточные жидкости (кровь), по активности определенных ферме ...
Неядерные геномы. ДНК митохондрий и хлоропластов.
Отличительная особенность клеток эукариот состоит в том, что часть генетической информации у них заключена в молекулах, находящихся вне хромосом, локализованных в ядре. Существует два таких типа цитоплазматических ДНК: одни – в митохондриях эукариот, другие – в хлоропластах зеленых растений и водорослей. Как и все цитоплазматические эле ...
Норма реакции генотипа
При формировании генетических представлений о связи между геном и признаком изначально предполагалось, что каждому признаку соответствовал особый детерминант (наследственный фактор), который обусловливал развитие своего признака. Однако такие представления далеки от истины, а прямые и однозначные связи гена с признаком на самом деле ско ...