Введение
Страница 1

В первой трети ХХ столетия механическое мировоззрение, исходящее из представлений о линейности, определенности и однозначности причинно-следственных связей, редукции любого сложного объекта к сумме более простых исходных элементов и выведения из них различных комбинаций всех свойств объекта, потерпело окончательное поражение. Это обнаружилось не только в описании биологических и социальных явлений, но и в фундаменте естествознания – физике. «В классической науке ХIХ века господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию (в энергетическом смысле это и означало неупорядоченность или хаос)»1. Основанная на античных традициях поиска первокирпичиков Мироздания, физика изучала, главным образом, структуру и свойства объекта, наиболее существенные взаимосвязи между его отдельными элементами. Однако объекты природы нельзя представить в виде простой суммы отдельных элементов, они гораздо сложнее. «К описанию объекта природы не всегда применимы классические модели и представления, ибо мир является неделимым целым, сетью отношений, сетью взаимосвязанных и взаимообусловленных процессов, которые затрудняются познать и адекватно описать не только классическая, но и неклассическая науки»2. Классическая наука может объяснить лишь, как из порядка возникает хаос, чем обусловлены взрывы звезд, разрушение планет, старение и смерть организмов, распад цивилизаций.

Эта направленность процессов связывается с ростом энтропии в изолированных системах и стремлением ее к некоторому максимуму, при котором система переходит в состояние хаоса. «Из хаоса, утверждали древние греки, Вселенная родилась, в хаос же, по предположению классической термодинамики, и возвратится»3.

При подготовке этого реферата у меня возник любопытный вопрос: если Вселенная эволюционирует только к хаосу, то как она могла возникнуть и сорганизоваться до нынешнего упорядоченного состояния? Но этим вопросом классическая термодинамика (как раздел физики) не задавалась, ибо сформировалась в эпоху, когда не стационарный характер Вселенной не обсуждался. «В это время единственным немым укором термодинамике служила дарвиновская теория эволюции»1. Ведь предполагаемый ею процесс развития растительного и животного мира характеризовался его непрерывным усложнением, нарастанием высоты организации и порядка. Зарождаются, растут и усложняются организмы, появляются их новые виды, более приспособленные к среде обитания, возникают новые звездные системы и новые цивилизации; беспорядочная группа рыб почти мгновенно превращается в косяк, птицы собираются в стаю, при этом и птицы в стае, и рыбы в косяке действуют столь синхронно, как будто это единый целостный организм. Живая природа почему-то стремится прочь от хаоса. Налицо явная несостыковка законов развития живой и неживой природы.

«Как получается, что система самопроизвольно переходит из состояния хаоса, наиболее вероятного и выгодного с энергетической точки зрения, в состояние порядка, менее вероятного и менее выгодного (с более высокой энергией)? Как и за счет чего происходит ее самоорганизация (самоупорядочение)?»2. Этими вопросами задавались ученые из разных областей естествознания, разработанные классической и неклассической наукой познавательные модели не могли ответить на эти вопросы. В очередной раз естественные науки оказались в тупике и были поставлены перед необходимостью перехода к новым качественным представлениям об окружающем мире, что в немалой степени способствовало возрастанию роли комплексных исследовательских программ в организации научных исследований. Другая важнейшая причина поиска нового подхода к его изучению лежит в области современной техники – проблем разработки средств получения, хранения и передачи информации, создания различных систем управления, регулирования и т.д.

«Отказ от механистической методологии и практические нужды общества потребовали поиска новых концепций и идей, учитывающих принципиальную сложность исследуемых объектов и ориентированных на познание их целостности и системных качеств»1. В числе первых научных дисциплин, поставивших эту проблему стали экономика, биология, психология и лингвистика. Но подходы к ее решению были найдены при исследовании поведения физических и химических систем. В процессе разрешения этой проблемы и сформировалась постнеклассическая наука. «Она акцентирует внимание на исследовании всей совокупности иерархий систем Мироздания как взаимосвязанной целостности или сети взаимодействующих элементов. Объект ее исследования – процесс развития, общие принципы самоорганизации и эволюции сложных систем разного уровня и разной природы, особенности смены качественных состояний, механизмы, динамика и пространственно-временная развертка этого процесса»2.

Страницы: 1 2


Электросинерез. Электроиммуноанализ
Перекрестный иммуноэлектрофорез. Информацию о равновесных процессах в р-ре получают при изучении зависимости скорости миграции ионов исследуемого элемента от концентрации одного или неск. участвующих в р-ции в-в. По этой зависимости можно выявлять состав продуктов р-ции и определять константы равновесия. В случае р-ций комплексообразов ...

Принципы относительности
Галилей открыл принцип инерции, движения тела в пустоте, где нет сопротивления. Сопротивление среды он считал несущественным. Он также сформулировал принцип относительности: во всех инерциальных системах отчета все физические явления происходят одинаково. Эти два принципа описывают свойство пространства Вселенной. Окончательную формул ...

Промежность
Под промежностью в узком смысле слова понимают область, расположенную между наружными половыми органами и заднепроходным отверстием. В широком смысле промежностью называют область выхода из малого таза. Ее ограничивают спереди лобковый симфиз, с боков - седалищные бугры, а сзади - копчик. Это пространство заполняют мышцы, фасции, жирова ...