Механизм воздействия бактериофагов на бактериальную клетку. Размножение фагов
Страница 1

Взаимоотношения между фагом и чувствительной к нему клеткой очень сложны и не всегда завершаются лизисом клетки и размножением в ней фага. Одни бактериофаги весьма специфичны и способны лизировать клетки только одного какого-либо вида микроорганизмов (монофаги), другие — клетки разных видов (полифаги). Рассмотрим такую инфекцию клетки, которая заканчивается гибелью клетки и размножением в ней фага. Такая инфекция называется продуктивной.

Важнейшей особенностью размножения фага является то, что оно может происходить только в живых клетках, находящихся в стадии роста.

В мертвых клетках, а также продуктах клеточного обмена размножение фага не происходит По характеру взаимодействия с микробной клеткой различают вирулентные и умеренные Б. Процесс взаимодействия вирулентного Б. с клеткой весьма сложный и состоит из следующих последовательно протекающих этапов (рис. 10): 1) адсорбция фаговой частицы на поверхности микробной клетки; 2) проникновение содержимого головки фаговой частицы (нуклеиновой кислоты) в микробную клетку; 3) внутриклеточное развитие фага, заканчивающееся образованием новых фаговых частиц; 4) лизис клетки и выход из нее новых фагов.

Время с момента инфицирования клетки фагом до лизиса клетки называется латентным или скрытым периодом. Продолжительность этого периода различна для разных типов фага, зависит от окружающей температуры, состава среды и других факторов. Латентный период фагов, специфичных для одних бактерий, 15—40 мин, для других — 5 ч и более. У фагов актиномицетов латентный период может быть еще продолжительнее. При низкой температуре латентный период значительно увеличивается.

Иллюстрация 10: Схема размножения фага.

Иллюстрация 11: Адсорбция фага на клетке

Из всех этапов размножения фага наиболее изучен первый — адсорбция.

Адсорбция фага на клетке — реакция весьма специфичная. В клеточной стенке бактерий имеются особые структуры (рецепторы), к которым могут прикрепиться фаги. Адсорбируются на рецепторах только те фаги, к которым чувствительна клетка.

Фаги, имеющие отростки, прикрепляются к микробной стенке свободным концом отростка. Нитевидные фаги, а также фаги, не имеющие отростков, адсорбируются не на микробной стенке, а на нитевидных структурах, окружающих стенку, — фимбриях. Описаны фаги, которые прикрепляются отростком к бактериальным жгутикам. У некоторых фагов процесс адсорбции может осуществляться лишь в том случае, когда в среде имеются определенные вещества — кофакторы: аминокислоты (триптофан, тирозин и др.) или соли (кальциевые, магниевые).

На конце фагового отростка имеется особый фермент типа лизоцима. После адсорбции фага под влиянием этого фермента происходит растворение стенки микробной клетки и содержимое головки фага — нуклеиновая кислота — перекачивается в микробную клетку. Этим завершается второй этап процесса размножения фага.

Остальные структуры фаговой частицы — оболочка головки, отросток и его субструктуры — внутрь инфицированной фагом клетки не попадают. Их роль заключается в обеспечении сохранности фаговой частицы, находящейся вне клетки, и содействии проникновению фаговой нуклеиновой кислоты в клетку при инфекции.

Страницы: 1 2 3


Культуральные свойства
V.cholerae предпочитает аэробные условия и быстро погибает в анаэробных. Температурный оптимум 37 0С. Вибрион хорошо растёт на простых питательных средах с высоким рН (7,6-8,0) ― 1 % щелочная лептонная вода, щелочной МПА, элективные и дифференциально-диагностические среды (например TCBS-arap). На твёрдых средах возбудитель образу ...

Лимфоциты: Т и В – типа. Их функции
Лимфоциты содержат крупное ядро, окружённым узким ободком слабо базафильной цитоплазмы, органоиды слабо развиты. По функционному признаку различают: Т – лимфоциты проходят развитие в вилочковой железе и в спец зонах переферич лимфоидных органоидов. Долгоживущие. Обеспечивают реакции клеточного иммунитета, участвуют в гуморальном иммуни ...

Электронная микроскопия
Теоретически разрешение просвечивающего элек­тронного микроскопа составляет 0,002 нм; реальное, разрешение современных микроскопов приближает­ся к 0,1 нм. На практике разрешение для биологических объектов достигает 2 нм. Просвечивающий электронный микроскоп (рис. 1-7) состоит из колонны, через которую в вакууме проходят электроны, и ...